Line 21: Line 21:
 
'''Problem 2. ''' (50 pts)  
 
'''Problem 2. ''' (50 pts)  
  
Let&nbsp;'''<span class="texhtml">''r''<sub>0</sub>(λ), &nbsp;<span class="texhtml">''g''<sub>0</sub>(λ)</span></span>'''&nbsp;,&nbsp;<span style="line-height: 19.9200000762939px;">and&nbsp;</span>''b''<sub style="font-family: serif; line-height: 1.5em;">0</sub><span style="font-family: serif; line-height: 1.5em;">(λ)</span><span style="line-height: 19.9200000762939px;">&nbsp;be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let <span class="texhtml">[''r'',''g'',''b'']</span>&nbsp;be the corresponding CIE tristimulus values.&nbsp;</span>  
+
Let <math> r_0(\lambda)</math>, <math>g_0(\lambda)</math>, and <math>b_0(\lambda)</math> be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let <span class="texhtml">[''r'',''g'',''b'']</span>&nbsp;be the corresponding CIE tristimulus values.&nbsp;</span>  
  
 
Furthermore, let&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>, and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by&nbsp;<span class="texhtml">''F'' = [''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>, where  
 
Furthermore, let&nbsp;<span class="texhtml">''f''<sub>1</sub>(λ)</span>,&nbsp;<span class="texhtml">''f''<sub>2</sub>(λ)</span>, and&nbsp;<span class="texhtml">''f''<sub>3</sub>(λ)</span>&nbsp;be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by&nbsp;<span class="texhtml">''F'' = [''F''<sub>1</sub>,''F''<sub>2</sub>,''F''<sub>3</sub>]<sup>''t''</sup></span>, where  
Line 49: Line 49:
 
</math>  
 
</math>  
  
<br> a) Why is it necessary that&nbsp;<math>f_k(\lambda) \geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2</span>?
+
<br> a) Why is it necessary that&nbsp;<math>f_k(\lambda) \geq 0</math>&nbsp;for&nbsp;<span class="texhtml">''k'' = 0,1,2</span>?  
  
 
b) Are the functions, <math> r_0(\lambda) \geq 0</math>, <math>g_0(\lambda) \geq 0</math>, and <math>b_0(\lambda) \geq 0</math>? If so, why? If not, why not?  
 
b) Are the functions, <math> r_0(\lambda) \geq 0</math>, <math>g_0(\lambda) \geq 0</math>, and <math>b_0(\lambda) \geq 0</math>? If so, why? If not, why not?  
Line 56: Line 56:
  
 
d) Do functions <span class="texhtml">''f''<sub>''k''</sub>(λ)</span> exist, which meet these requirements? If so, give a specific example of such functions.  
 
d) Do functions <span class="texhtml">''f''<sub>''k''</sub>(λ)</span> exist, which meet these requirements? If so, give a specific example of such functions.  
 +
 +
Click here to view student answers and discussions
  
 
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]
 
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Image_processing]]

Revision as of 18:34, 10 November 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2013



Question

Problem 1. (50 pts)


Problem 2. (50 pts)

Let $ r_0(\lambda) $, $ g_0(\lambda) $, and $ b_0(\lambda) $ be the CIE color matching functions for red, green, and blue primaries at 700 nm, 546.1 nm, and 435.8 nm, respectively, and let [r,g,b] be the corresponding CIE tristimulus values. </span>

Furthermore, let f1(λ)f2(λ), and f3(λ) be the spectral response functions for the three color outputs of a color camera. So for each pixel of the camera sensor, there is a 3-dimensional output vector given by F = [F1,F2,F3]t, where

$ F_1 = \int_{-\infty}^{\infty}f_1(\lambda)I(\lambda)d\lambda $,

$ F_2 = \int_{-\infty}^{\infty}f_2(\lambda)I(\lambda)d\lambda $,

$ F_3 = \int_{-\infty}^{\infty}f_3(\lambda)I(\lambda)d\lambda $

where I(λ) is the energy spectrum of the incoming light and $ f_k(\lambda)\geq 0 $ for k = 0,1,2..

Furthermore, assume there exists a matrix, M, so that

$ \left[ {\begin{array}{*{20}{c}} f_1(\lambda)\\ f_1(\lambda)\\ f_1(\lambda) \end{array}} \right] = {\begin{array}{*{20}{c}} M \end{array}} \left[ {\begin{array}{*{20}{c}} r_0(\lambda)\\ g_0(\lambda)\\ b_0(\lambda) \end{array}} \right] $


a) Why is it necessary that $ f_k(\lambda) \geq 0 $ for k = 0,1,2?

b) Are the functions, $ r_0(\lambda) \geq 0 $, $ g_0(\lambda) \geq 0 $, and $ b_0(\lambda) \geq 0 $? If so, why? If not, why not?

c) Derive an formula for the tristimulus vector [r,g,b]t in terms of the tristimulus vector F = [F1,F2,F3]t.

d) Do functions fk(λ) exist, which meet these requirements? If so, give a specific example of such functions.

Click here to view student answers and discussions

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics