Line 27: | Line 27: | ||
=Solution 1= | =Solution 1= | ||
− | + | <math>Var(X)=E(X^2)-E(X)^2</math> | |
− | + | First, | |
− | + | ||
− | + | ||
− | + | ||
− | + | <math>E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx</math> | |
− | + | Since | |
+ | <math>\begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ | ||
+ | =\int -x^2 de^{-\lambda x}\\ | ||
+ | =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ | ||
+ | =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ | ||
+ | =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} | ||
+ | \end{array}</math>, | ||
− | + | We have | |
− | <math> | + | <math>E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty</math> |
− | + | ||
− | + | ||
− | - | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | \ | + | |
− | + | By L'Hospital's rule, we have | |
+ | |||
+ | <math>\lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0</math> | ||
+ | |||
+ | and | ||
+ | |||
+ | <math>\lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0</math>. | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>E(X) = \frac{2}{\lambda^2}</math>. | ||
+ | |||
+ | Then we take a look at <math>E(X)</math>. | ||
+ | |||
+ | <math>E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx</math> | ||
+ | |||
+ | <math>\begin{array}{l} | ||
+ | \int x\lambda{e}^{-\lambda{x}}dx\\ | ||
+ | =\int xde^(\lambda x)\\ | ||
+ | =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ | ||
+ | =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ | ||
+ | \end{array}</math> | ||
− | + | Similar to the calculation of <math>E(X^2)</math>, | |
− | <math> | + | <math>E(X)=\frac{1}{\lambda}</math>. |
− | + | ||
− | + | ||
− | + | ||
+ | Therefore, | ||
+ | <math>Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2}</math>. | ||
---- | ---- |
Revision as of 06:24, 4 November 2014
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2013
Part 3
Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.
Solution 1
$ Var(X)=E(X^2)-E(X)^2 $
First,
$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $
Since
$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,
We have
$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $
By L'Hospital's rule, we have
$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $
and
$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.
Therefore,
$ E(X) = \frac{2}{\lambda^2} $.
Then we take a look at $ E(X) $.
$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $
$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $
Similar to the calculation of $ E(X^2) $,
$ E(X)=\frac{1}{\lambda} $.
Therefore,
$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.
Solution 2
Assume
$ Y=\left(\begin{array}{c}Y_i \\ Y_j\end{array} \right)=A\left(\begin{array}{c}X_i \\ X_j\end{array} \right)=\left(\begin{array}{c}a_{11}X_i+a_{12}X_j \\ a_{21}X_i+a_{22}X_j\end{array} \right) $.
Then
$ \begin{array}{l}E(Y_iY_j)=E[(a_{11}X_i+a_{12}X_j)(a_{21}X_i+a_{22}X_j)]\\ =a_{11}a_{21}\sigma^2+a_{12}a_{22}\sigma^2+(a_{11}a_{21}+a_{22}a_{11})E(X_iX_j) \end{array} $
For $ |i-j|\geq1 $, $ E(X_i,X_j)=0 $. Therefore, $ a_{11}a_{21}+a_{12}a_{22}=0 $.
One solution can be
$ A=\left(\begin{array}{cc} 1 & -1\\ 1 & 1 \end{array} \right) $.
Critique on Solution 2:
1. $ E(Y_iY_j)=0 $ is not the condition for the two random variables to be independent.
2. "For $ |i-j|\geq1 $, $ E(X_i,X_j)=0 $" is not supported by the given conditions.