(→Example) |
(→Example) |
||
Line 9: | Line 9: | ||
<pre> | <pre> | ||
Let: | Let: | ||
− | x1(t)=t, x2(t)=t | + | x1(t)=t, x2(t)=2*t; |
− | y1(t)=2* | + | y1(t)=2*x1(t)= 2*t, y2(t)=3*x2(t)= 6*t; |
a=2, b=3; | a=2, b=3; | ||
− | so, a*x1(t)+b*x2(t)= | + | so, a*x1(t)+b*x2(t)= |
</pre> | </pre> |
Revision as of 15:32, 12 September 2008
Linear System
A system is called "Linear" if for any constants a,b and for any inputs x1(t),x2(t),(x1[n],x2[n]) yielding output y1(t),y2(t),respectively, the respond to a*x1(t)+b*x2(t) is a*y1(t)+b*y2(t)
Example
Let: x1(t)=t, x2(t)=2*t; y1(t)=2*x1(t)= 2*t, y2(t)=3*x2(t)= 6*t; a=2, b=3; so, a*x1(t)+b*x2(t)=