(New page: Category:slecture Category:ECE438Fall2014Boutin Category:ECE Category:ECE438 Category:signal processing <center><font size= 4> Downsampling in the Frequency Domain ...)
 
Line 9: Line 9:
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Anonymous
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student John S.
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
Line 17: Line 17:
 
<font size = 3>
 
<font size = 3>
 
==Introduction==
 
==Introduction==
 +
Remember for time domain, Downsampling is defined as:<br><br>
 +
Image1<br><br>
 +
Now let's describe this process in the frequency domain.
 
==Derivation==
 
==Derivation==
 +
First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.<br>
 +
<math>\begin{align}
 +
\mathcal{X}(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\
 +
&= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j2\omega f}
 +
\end{align}</math>
 +
<br>make the substitution of <math>n=\frac{m}{\D}</math> 
 
==Example==
 
==Example==
 
==Conclusion==
 
==Conclusion==
  
 
----
 
----

Revision as of 13:41, 9 October 2014


Downsampling in the Frequency Domain

A slecture by ECE student John S.

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.


Introduction

Remember for time domain, Downsampling is defined as:

Image1

Now let's describe this process in the frequency domain.

Derivation

First we'll take the Discrete Time Fourier Transform of the original signal and the downsampled version of it.
$ \begin{align} \mathcal{X}(\omega) &= \mathcal{F }\left \{ x_2[n] \right \} = \mathcal{F }\left \{ x_1[Dn] \right \}\\ &= \sum_{n=-\infty}^\infty x_1[Dn]e^{-j2\omega f} \end{align} $
make the substitution of $ n=\frac{m}{\D} $

Example

Conclusion


Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood