m
Line 1: Line 1:
[[Category:HW4ECE$38F13]]
+
[[Category:HW4ECE$38F14]]
  
 
=Homework 4, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
 
=Homework 4, [[ECE438]], Fall 2014, [[user:mboutin|Prof. Boutin]]=
Line 66: Line 66:
 
==Question 4==
 
==Question 4==
 
'''Downsampling and upsampling'''
 
'''Downsampling and upsampling'''
 
a) For <math>k=0,1,...,N-1</math>
 
 
<math>\begin{align}
 
X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\
 
&= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\
 
&= 1
 
\end{align}</math>
 
 
<math>
 
X_N(k)  </math> is periodic with N
 
 
*<span style="color:red">Instructor's comments: How about the other values of k? -pm </span>
 
b) Using Euler Formula, we have
 
 
<math>\begin{align}
 
x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\
 
&= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}}
 
\end{align}</math>
 
 
Observing that <math>x[n]</math> has fundamental period <math>N=12</math>. Using IDFT, we have
 
 
<math>\begin{align}
 
x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\
 
\frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}}
 
\end{align}</math>
 
 
By comparison, we know for <math>k=0,1,...,11</math>
 
 
<math class="inline">
 
X_{12}[k] = \left\{
 
\begin{array}{ll}
 
6, & k=1,3 \\
 
0, & otherwise.
 
\end{array}
 
\right.
 
</math>
 
 
<math class="inline">
 
X_{12}[k]  </math>  is periodic with 12.
 
 
*<span style="color:red">Instructor's comments: How about k=12, k=13, and all the other values of k? -pm </span>
 
 
c)
 
 
<math>x[n]=(\frac{1}{\sqrt 2} + j\frac{1}{\sqrt 2})^n = (e^{\frac{j\pi}{4}})^n</math>
 
 
Then <math>x[n]</math> has fundamental period <math>N=8</math>. Using IDFT, we have
 
 
<math>\begin{align}
 
x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\
 
e^{\frac{j\pi n}{4}} &= \frac{1}{8}\sum_{n=0}^{7}e^{\frac{j2\pi nk}{8}}
 
\end{align}</math>
 
 
By comparison, we know for <math>k=0,1,...,7</math>
 
 
<math class="inline">
 
X_{8}[k] = \left\{
 
\begin{array}{ll}
 
8, & k=1 \\
 
0, & otherwise.
 
\end{array}
 
\right.
 
</math>
 
 
<math class="inline">
 
X_{8}[k]  </math>  is periodic with 8.
 
 
*<span style="color:red">Instructor's comments: Don't forget to say that K[k} repeats periodically with period 8. THat way, all values of k are covered. -pm </span>
 
==Question 5==
 
 
Observing that <math>X(k)</math> has a fundamental period <math>N=4</math>
 
 
<math>\begin{align}
 
x[n] &= \frac{1}{N}\sum_{k=0}^{N-1}(e^{j \pi k }+e^{-j \frac{\pi}{2} k})e^{\frac{j2\pi nk}{N}} \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}-j2\pi k} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
&= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n-2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\
 
\end{align}</math>
 
 
when <math>n\neq 1 \text{ or } 2</math>, using geometric series summation formula we have
 
 
<math>x[n]=\frac{1}{4}( \frac{1-e^{j2\pi (n-2)}}{1-e^{\frac{j2\pi (n-2)}{4}}} + \frac{1-e^{j2\pi (n-1)}}{1-e^{\frac{j2\pi (n-1)}{4}}} ) = 0</math>
 
 
when <math>n=1 \text{ or } 2</math>
 
 
<math>x[n]=\sum_{k=0}^{3}1=4</math>
 
 
<math>x[n]</math> will be periodic with 4.
 
 
NOTE: In general, <math>X(k)</math> does not need to have a length equal to the fundamental period. Suppose N is an arbitrary number, we can still derive the IDFT using argument that is similar to the one described above.
 
  
 
----
 
----
  
[[ HW6ECE$38F13|Back to HW6ECE$38F13]]
+
[[ HW4ECE$38F14|Back to HW4ECE$38F14]]

Revision as of 09:14, 8 October 2014


Homework 4, ECE438, Fall 2014, Prof. Boutin


Question 1

Conversion between analog and digital frequencies

To prevent aliasing, the sampling rate should be higher or equal to twice of the highest frequency of the signal.

$ \begin{align} f_s=2 \cdot 2500=5000Hz \end{align} $

So the sampling frequency should be greater than 5000Hz.

We need a high pass filter that filters out signals below the frequency 60Hz.

$ \begin{align} \omega_c=\frac{2\pi \cdot f_c }{f_s}=\frac{2\pi \cdot 60 }{5000} \end{align} $

Hw6 1.jpg

Question 2

Conversion between analog and digital frequencies

We can think of the long term trend as low frequency component and annual cycle as high frequency component. In order to remove the annual cycle, we need a low pass filter. The sampling rate $ f_s=12 $samples/year. The periodic component has frequency of $ f_c=1 $cycle/year.

The cutoff frequency of of the ideal LPF is

$ \omega_c=\frac{2\pi \cdot 1}{12}=\frac{\pi}{6} $


Question 3

Downsampling and upsampling

$ \text{a)} \;\; \text{General Relation for the decimation with a factor of } D \,\! $.

$ \text{Let } X(w) = \mathcal{F}(x[n]) $

$ \begin{align} Y(w) &= \sum_{n=-\infty}^{\infty} y[n]e^{-jwn} = \sum_{n=-\infty}^{\infty} x[Dn]e^{-jwn} \\ &= \sum_{m=-\infty, m=Dk}^{\infty} x[m]e^{-j\frac{wm}{D}} = \sum_{m=-\infty}^{\infty} x[m] \left( \sum_{k=-\infty}^{\infty} \delta[m-Dk] \right) e^{-j\frac{wm}{D}} \\ &= \sum_{m=-\infty}^{\infty} x[m] \left( \frac{1}{D} \sum_{k=0}^{D-1} e^{j\frac{2\pi}{D}km} \right) e^{-j\frac{wm}{D}} = \sum_{k=0}^{D-1} \frac{1}{D} \sum_{m=-\infty}^{\infty} x[m]e^{j\left(w-\frac{2\pi}{D}k\right)m} \\ &= \sum_{k=0}^{D-1} \frac{1}{D} X\left(\frac{w-2\pi k}{D}\right) \\ \end{align} $

Replacing D with 4 would be the answer.


$ \text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\! $.

$ \begin{align} Z(w) &= \sum_{n=-\infty}^{\infty} z[n]e^{-jwn} \\ &= \sum_{n=-\infty}^{\infty} \left( \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-jwn} \\ &= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} \delta[n-kL] e^{-jwn} = \sum_{k=-\infty}^{\infty} x[k] e^{-jwkL} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-jLwk} = X(Lw) \\ &\end{align} $

Since $ X(w) $ is periodic with $ 2\pi $, $ Z(w)=X(Lw) $ is periodic with $ 2\pi/L $.

Replaing L with 4 would be the answer.

Question 4

Downsampling and upsampling


Back to HW4ECE$38F14

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang