Line 19: Line 19:
 
comb_T(x(t)) &= x(t) \times p_T(t) &= x_s(t)\\  
 
comb_T(x(t)) &= x(t) \times p_T(t) &= x_s(t)\\  
 
\end{align}
 
\end{align}
</math> The comb of a signal is equal to the signal multiplied by an impulse train. <math>
+
</math> The comb of a signal is equal to the signal multiplied by an impulse train which is equal to the sampled signal. Essentially, the comb is grabbing points on the graph x(t) at a set interval, T. <math>
 
\begin{align}
 
\begin{align}
 
X_s(f) &= F(x_s(t)) = F(comb_T(x(t))\\
 
X_s(f) &= F(x_s(t)) = F(comb_T(x(t))\\

Revision as of 03:30, 7 October 2014

Outline


Introduction
Derivation
Example
Conclusion
References


Introduction

Hello! My name is Ryan Johnson! You might be wondering what a slecture is! A slecture is a student lecture that gives a brief overview about a particular topic! In this slecture, I will discuss the relationship between an original signal, x(t), and a sampling of that original signal, x_s(t). We will also take a look at how this relationship translates to the frequency domain, (X(f) & X_s(f)).

Derivation

F = fourier transform

$ \begin{align} comb_T(x(t)) &= x(t) \times p_T(t) &= x_s(t)\\ \end{align} $ The comb of a signal is equal to the signal multiplied by an impulse train which is equal to the sampled signal. Essentially, the comb is grabbing points on the graph x(t) at a set interval, T. $ \begin{align} X_s(f) &= F(x_s(t)) = F(comb_T(x(t))\\ &= F(x(t)p_T(t))\\ &= X(f) * F(p_T(f)\\ \end{align} $ Multiplication in time is equal to convolution in frequency.
$ \begin{align} X_s(f)&= X(f)*\frac{1}{T}\sum_{n = -\infty}^\infty \delta(f-\frac{n}{T})\\ &= \frac{1}{T}X(f)*p_\frac{1}{T}(f)\\ &= \frac{1}{T}rep_\frac{1}{T}X(f)\\ \end{align} $ The result is a repetition of the fourier transformed signal.


Example Johns637 3.jpg

Conclusion

Xs(f) is a rep of X(f) in the frequency domain with amplitude of 1/T and period of 1/T.

References
[1] Mireille Boutin, "ECE 438 Digital Signal Processing with Applications," Purdue University. October 6, 2014.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett