Line 16: | Line 16: | ||
---- | ---- | ||
==Questions 1== | ==Questions 1== | ||
− | Compute the DFT of the following signals | + | Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]? |
a) <math class="inline"> | a) <math class="inline"> | ||
Line 27: | Line 27: | ||
</math> | </math> | ||
− | |||
+ | b) <math>x_1[n]= e^{j \frac{2}{3} \pi n};</math> | ||
+ | c) <math>x_5[n]= e^{-j \frac{2}{1000} \pi n};</math> | ||
− | + | d) <math>x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n};</math> | |
+ | e) <math>x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ;</math> | ||
+ | |||
+ | f) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n )</math> | ||
+ | |||
+ | g) <math>x_8[n]= (-j)^n .</math> | ||
+ | |||
+ | h) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math> | ||
+ | |||
+ | Note: All of these DFT are VERY simple to compute. If your computation looks like a monster, look for a simpler approach! | ||
+ | ---- | ||
==Question 2 == | ==Question 2 == | ||
Compute the inverse DFT of <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>. | Compute the inverse DFT of <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>. | ||
− | + | Note: Again, this is a VERY simple problem. If your computation looks like a monster, look for a simpler approach! | |
== Question 3 == | == Question 3 == | ||
Prove the time shifting property of the DFT. | Prove the time shifting property of the DFT. |
Revision as of 05:29, 29 September 2014
Contents
Homework 5, ECE438, Fall 2014, Prof. Boutin
Hard copy due in class, Monday October 6, 2014.
Presentation Guidelines
- Write only on one side of the paper.
- Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
- Staple the pages together.
- Include a cover page.
- Do not let your dog play with your homework.
Questions 1
Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?
a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $
b) $ x_1[n]= e^{j \frac{2}{3} \pi n}; $
c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n}; $
d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n}; $
e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $
f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $
g) $ x_8[n]= (-j)^n . $
h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $
Note: All of these DFT are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
Question 2
Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.
Note: Again, this is a VERY simple problem. If your computation looks like a monster, look for a simpler approach!
Question 3
Prove the time shifting property of the DFT.
Discussion
You may discuss the homework below.
- write comment/question here
- answer will go here