(2 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
----
 
----
  
<math>\mathrm{\underline{Cauchy's theorem}: Let } f:\mathbb{C} \to \mathbb{C}</math>
+
<u>Cauchy's theorem:</u> Let f be analytic on a domain <span class="texhtml">Ω</span>, and let <span class="texhtml">γ</span> be a nullhomologous, piecewise&nbsp;<span class="texhtml">''C''<sup>1</sup></span> curve in <span class="texhtml">Ω</span>.&nbsp; Then&nbsp;<math>\int_\gamma f(z)\,dz =0.</math>  
 
+
<br>  
+
  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
  
 
[[Category:2014_Summer_MA_598C_Weigel]]
 
[[Category:2014_Summer_MA_598C_Weigel]]

Latest revision as of 06:14, 5 August 2014


Really important results

Be able to state these perfectly, while taking a nap and juggling chainsaws.


Cauchy's theorem: Let f be analytic on a domain Ω, and let γ be a nullhomologous, piecewise C1 curve in Ω.  Then $ \int_\gamma f(z)\,dz =0. $


Back to 2014 Summer MA 598C Weigel

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn