Line 7: | Line 7: | ||
---- | ---- | ||
− | < | + | <u>Cauchy's theorem:</u> Let f be analytic on a domain <math>\Omega</math>, and let <math>\gamma</math> be a nullhomologous, piecewise <math>C^1</math> curve in <math>\Omega</math>. Then |
− | < | + | <math>\int_\gamma f(z)\, dz =0</math> |
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]] | <br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]] | ||
[[Category:2014_Summer_MA_598C_Weigel]] | [[Category:2014_Summer_MA_598C_Weigel]] |
Revision as of 06:13, 5 August 2014
Really important results
Be able to state these perfectly, while taking a nap and juggling chainsaws.
Cauchy's theorem: Let f be analytic on a domain $ \Omega $, and let $ \gamma $ be a nullhomologous, piecewise $ C^1 $ curve in $ \Omega $. Then
$ \int_\gamma f(z)\, dz =0 $