Line 7: Line 7:
 
----
 
----
  
<math>\mathrm{\underline{Cauchy's theorem}: Let } f:\mathbb{C} \to \mathbb{C}</math>
+
<u>Cauchy's theorem:</u> Let f be analytic on a domain <math>\Omega</math>, and let <math>\gamma</math> be a nullhomologous, piecewise&nbsp;<math>C^1</math> curve in <math>\Omega</math>.&nbsp; Then
  
<br>  
+
<math>\int_\gamma f(z)\, dz =0</math>
  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
  
 
[[Category:2014_Summer_MA_598C_Weigel]]
 
[[Category:2014_Summer_MA_598C_Weigel]]

Revision as of 06:13, 5 August 2014


Really important results

Be able to state these perfectly, while taking a nap and juggling chainsaws.


Cauchy's theorem: Let f be analytic on a domain $ \Omega $, and let $ \gamma $ be a nullhomologous, piecewise $ C^1 $ curve in $ \Omega $.  Then

$ \int_\gamma f(z)\, dz =0 $


Back to 2014 Summer MA 598C Weigel

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva