(New page: I will start populating this page once I get home from class and lab. Gladly appreciate it if the other 3 students that attended will help add and verify problems that are posted.)
 
(Discrete)
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
I will start populating this page once I get home from class and lab.
+
[[Category:ECE 301]]
Gladly appreciate it if the other 3 students that attended will help add and verify problems that are posted.
+
[[Category:Fall 2008]]
 +
[[Category:mboutin]]
 +
 
 +
== Phasors ==
 +
 
 +
<math>x(t)=Ae^{j\theta+\phi}</math>
 +
 
 +
Where A is the radius of the phasor and <math>\phi</math> if the offset.
 +
 
 +
==== Useful Phasors Facts ====
 +
 
 +
<math>e^{j\theta} = \cos{\theta}+j\sin{\theta}</math>
 +
 
 +
<math>Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi}</math>
 +
 
 +
<math>\cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 +
 
 +
<math>\sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math>
 +
 
 +
<math>|e^{j\theta}|=1</math>
 +
 
 +
 
 +
== Energy ==
 +
 
 +
==== Discrete ====
 +
 
 +
 
 +
<math>E_\infty = \sum_{n=-\infty}^\infty |x[n]|^2</math>
 +
 
 +
 
 +
==== Continuous ====
 +
 
 +
 
 +
<math>E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt)</math>
 +
 
 +
 
 +
== Power ==
 +
 
 +
==== Discrete ====
 +
 
 +
 
 +
<math>P_\infty = \lim_{N \to \infty} \left (\frac{1}{2N + 1} \sum_{n=-N}^{+N} |x[n]|^2 \right)</math>
 +
 
 +
==== Continuous ====
 +
 
 +
 
 +
<math>P_\infty = \lim_{T \to \infty} \left (\frac{1}{2T}  \int_{-T}^T |x(t)|^2\,dt \right)</math>
 +
 
 +
== Geometric Series ==

Latest revision as of 17:51, 5 November 2008


Phasors

$ x(t)=Ae^{j\theta+\phi} $

Where A is the radius of the phasor and $ \phi $ if the offset.

Useful Phasors Facts

$ e^{j\theta} = \cos{\theta}+j\sin{\theta} $

$ Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi} $

$ \cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2} $

$ \sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

$ |e^{j\theta}|=1 $


Energy

Discrete

$ E_\infty = \sum_{n=-\infty}^\infty |x[n]|^2 $


Continuous

$ E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt) $


Power

Discrete

$ P_\infty = \lim_{N \to \infty} \left (\frac{1}{2N + 1} \sum_{n=-N}^{+N} |x[n]|^2 \right) $

Continuous

$ P_\infty = \lim_{T \to \infty} \left (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt \right) $

Geometric Series

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva