(New page: Category:ECE600 Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 14: Joint Expectation</font size> </center> -...)
 
m (Protected "ECE600 F13 Joint Expectation mhossain" [edit=sysop:move=sysop])
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE600]]
 
[[Category:ECE600]]
 
[[Category:Lecture notes]]
 
[[Category:Lecture notes]]
 +
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
 +
 +
 +
[[Category:ECE600]]
 +
[[Category:probability]]
 +
[[Category:lecture notes]]
 +
[[Category:slecture]]
  
 
<center><font size= 4>
 
<center><font size= 4>
'''Random Variables and Signals'''
+
[[ECE600_F13_notes_mhossain|'''The Comer Lectures on Random Variables and Signals''']]
 
</font size>
 
</font size>
 +
 +
[https://www.projectrhea.org/learning/slectures.php Slectures] by [[user:Mhossain | Maliha Hossain]]
 +
  
 
<font size= 3> Topic 14: Joint Expectation</font size>
 
<font size= 3> Topic 14: Joint Expectation</font size>
 
</center>
 
</center>
  
 
+
----
 
----
 
----
  
Line 24: Line 34:
  
 
Note that joint expectation is a linear operator, so if g<math>_1</math>,...,g<math>_n</math> are n functions from '''R'''<math>^2</math> to '''R''' and a<math>_1</math>,...,a<math>_n</math> are constants, then <br/>
 
Note that joint expectation is a linear operator, so if g<math>_1</math>,...,g<math>_n</math> are n functions from '''R'''<math>^2</math> to '''R''' and a<math>_1</math>,...,a<math>_n</math> are constants, then <br/>
<center><math>E\left[\sum_{i=1}^na_ig_I(X,Y)\right]=\sum_{i=1}^na_iE[g_i(X,Y)]</math></center>
+
<center><math>E\left[\sum_{i=1}^na_ig_i(X,Y)\right]=\sum_{i=1}^na_iE[g_i(X,Y)]</math></center>
  
  
Line 33: Line 43:
 
We still need <math>\mu_X</math>, <math>\mu_Y</math>, <math>\sigma_X</math><math>^2</math>, <math>\sigma_X</math><math>^2</math>, the means and variances of X and Y. Other moments that are of great interest are:
 
We still need <math>\mu_X</math>, <math>\mu_Y</math>, <math>\sigma_X</math><math>^2</math>, <math>\sigma_X</math><math>^2</math>, the means and variances of X and Y. Other moments that are of great interest are:
 
*The '''correlation''' between X and Y is <br/>
 
*The '''correlation''' between X and Y is <br/>
<center><math>\mbox{Corr}(X,Y)\equiv E[X,Y]</math></center>
+
<center><math>\mbox{Corr}(X,Y)\equiv E[XY]</math></center>
 
*The '''covariance''' of X and Y<br/>
 
*The '''covariance''' of X and Y<br/>
<center><math>\mbox{Cov}(X,Y)\equiv E[(X-\mu)_X)(Y-\mu_Y)]</math></center>
+
<center><math>\mbox{Cov}(X,Y)\equiv E[(X-\mu_X)(Y-\mu_Y)]</math></center>
 
*The '''correlation coefficient''' of X and Y is <br/>
 
*The '''correlation coefficient''' of X and Y is <br/>
 
<center><math>r_{XY}\equiv\frac{\mbox{Cov}(X,Y)}{\sigma_X\sigma_Y}</math></center>
 
<center><math>r_{XY}\equiv\frac{\mbox{Cov}(X,Y)}{\sigma_X\sigma_Y}</math></center>
Line 43: Line 53:
 
* If r<math>_{XY}</math>=0, then X and Y are said to be '''uncorrelated'''. It can be shown that  
 
* If r<math>_{XY}</math>=0, then X and Y are said to be '''uncorrelated'''. It can be shown that  
 
**X and Yare uncorrelated iff Cov(X,Y)=0 (proof).
 
**X and Yare uncorrelated iff Cov(X,Y)=0 (proof).
** X and Y are uncorrelated iff E[XY] = <math>\mu_X\mu_Y</math>
+
** X and Y are uncorrelated iff E[XY] = <math>\mu_X\mu_Y</math> (proof).
 
*X and Y are '''orthogonal''' if E[XY]=0.
 
*X and Y are '''orthogonal''' if E[XY]=0.
  
Line 54: Line 64:
 
<center><math>|E[XY]|\leq\sqrt{E[X^2]E[Y^2]}</math></center>
 
<center><math>|E[XY]|\leq\sqrt{E[X^2]E[Y^2]}</math></center>
  
with equality iff Y = a<math>_0</math> with probability 1, where a<math>_0</math> is a constant. Note that "equality with probability 1" will be defined later.  
+
with equality iff Y = a<math>_0</math>X with probability 1, where a<math>_0</math> is a constant. Note that "equality with probability 1" will be defined later.  
  
'''Proof''' We start by considering <br/>
+
'''Proof:''' <math>\qquad</math> We start by considering <br/>
 
<center><math>0\leq E[(aX-Y)^2]=a^2E[X^2]-2aE[XY]+E[Y^2]</math></center>
 
<center><math>0\leq E[(aX-Y)^2]=a^2E[X^2]-2aE[XY]+E[Y^2]</math></center>
 
which is a quadratic function of a ∈ '''R'''. Consider two cases:
 
which is a quadratic function of a ∈ '''R'''. Consider two cases:
Line 66: Line 76:
  
  
<center>[[Image:fig1_joint_expectation.png|500px|thumb|left|Fig 1: A possible depiction of the quadratic when the discriminant is greater than zero.]]</center>
+
<center>[[Image:fig1_joint_expectation.png|380px|thumb|left|Fig 1: A possible depiction of the quadratic when the discriminant is greater than zero.]]</center>
  
Since this quadratic is greater than 0 for all a, there are no real roots. There must be two complex roots. From the quadratic equation, this means that <\br>
+
Since this quadratic is greater than 0 for all a, there are no real roots. There must be two complex roots. From the quadratic equation, this means that <br/>
 
<center><math>E[XY] < \sqrt{E[X^2]E[Y^2]}</math></center>
 
<center><math>E[XY] < \sqrt{E[X^2]E[Y^2]}</math></center>
  
Line 78: Line 88:
  
  
<center>[[Image:fig2_joint_expectation.png|500px|thumb|left|Fig 2: A possible depiction of the quadratic when the discriminant is equal to zero.]]</center>
+
<center>[[Image:fig2_joint_expectation.png|380px|thumb|left|Fig 2: A possible depiction of the quadratic when the discriminant is equal to zero.]]</center>
  
  
Line 86: Line 96:
 
<center><math>X=Y\;\mbox{iff}\;X(\omega)=Y(\omega)\;\forall\omega\in\mathcal S</math></center>
 
<center><math>X=Y\;\mbox{iff}\;X(\omega)=Y(\omega)\;\forall\omega\in\mathcal S</math></center>
  
with the same notion of equality, we would have that <br/>
+
With the same notion of equality, we would have that <br/>
 
<center><math>X=0\;\mbox{iff}\;X(\omega)=0\;\forall\omega\in\mathcal S</math></center>
 
<center><math>X=0\;\mbox{iff}\;X(\omega)=0\;\forall\omega\in\mathcal S</math></center>
 +
 +
However, the result for the case E[X<math>^2</math>]=0 is that X=0 with probability 1, which means that there is a set A = {<math>\omega</math> ∈  ''S'': X(<math>\omega</math>) = 0} with P(A) = 1.
 +
 +
Returning to the case E[(a<math>_0</math>X-Y)<math>^2</math>]=0, we get that Y = a<math>_0</math>X for some a<math>_0</math> ∈ '''R''', with probability 1. <br/>
 +
Thus we have shown that <br/>
 +
<center><math>E[XY]=\sqrt{E[X^2]E[Y^2]} </math></center>
 +
with equality iff Y = a<math>_0</math>X with probability 1.
 +
 +
 +
----
 +
 +
==The Correlation Coefficient for Jointly Gaussian Random Variables X and Y==
 +
 +
We have previously seen that the joint density function for Gaussian X and Y contains a parameter r. It can be shown that this r is the correlation coeffecient of X and Y: <br/>
 +
<center><math>r = \frac{E[XY]-\mu_X\mu_Y}{\sigma_X\sigma_Y}</math></center>
 +
 +
Note that one way to show this is to use a concept called iterated expectation, which we will cover later.
 +
 +
 +
----
 +
 +
==Joint Moments==
 +
 +
'''Definition''' <math>\qquad</math> The '''joint moments''' of X and Y are <br/>
 +
<center><math>\mu_{jk}\equiv E[X^jY^k]</math></center>
 +
and the '''joint central moments''' are <br/>
 +
<center><math>\sigma_{jk}=E[(X-\overline{X})^j(Y-\overline{Y})^k]</math></center>
 +
for j = 0,1,...; k = 0,1,...
 +
 +
 +
----
 +
 +
==Joint Characteristic Function==
 +
 +
'''Definition''' <math>\qquad</math> The '''joint characteristic function''' of X and Y is <br/>
 +
<center><math>\Phi_{XY}(\omega_1,\omega_2)\equiv E[e^{i(\omega_1X+\omega_2Y)}]</math></center>
 +
for <math>\omega_1,\omega_2</math> ∈ '''R'''.
 +
 +
If X and Y are continuous, we write this as <br/>
 +
<center><math>\Phi_{XY}(\omega_1,\omega_2)=\int\int_{\mathbf R^2}e^{i(\omega_1x+\omega_2y)}f_{XY}(x,y)dxdy</math></center>
 +
 +
If X and Y are discrete, we use <br/>
 +
<center><math>\Phi_{XY}(\omega_1,\omega_2)=\sum_{x\in\mathcal R_x}\sum_{y\in\mathcal R_y}e^{i(\omega_1x+\omega_2y)}p_{XY}(x,y)</math></center>
 +
 +
Note:<br/>
 +
:<math>\bullet\; \Phi_X(\omega)=\Phi_{XY}(\omega,0);\quad\Phi_Y(\omega)=\Phi_{XY}(0,\omega)</math><br/>
 +
:(proof)
 +
 +
:<math>\bullet\; Z = aX+bY \;\Rightarrow\;\Phi_Z(\omega) =\Phi_{XY}(a\omega,b\omega)</math>
 +
:(proof)
 +
 +
:<math>\bullet\; X \perp\!\!\!\perp Y \;\mbox{iff}\;\Phi_{XY}(\omega_1,\omega_2)=\Phi_X(\omega_1)\Phi_Y(\omega_2)
 +
</math>
 +
:(proof)
 +
 +
:<math>\bullet\; X \perp\!\!\!\perp Y \;\mbox{and}\;Z=X+Y\;\Rightarrow\Phi_{Z}(\omega)=\Phi_X(\omega)\Phi_Y(\omega)</math>
 +
:(proof)
 +
 +
 +
----
 +
 +
==Moment Generating Function==
 +
 +
The '''joint moment generating function''' of X and Y is <br/>
 +
<center><math>\phi_{XY}(s_1,s_2)=E[e^{s_1X+s_2Y}];\qquad s_1,s_2\in\mathbb C</math></center>
 +
 +
Then it can be shown that <br/>
 +
<center><math>\begin{align}
 +
\mu_{jk}&=E[X^jY^k] \\
 +
&=\frac{\partial^j\partial^k}{\partial s_1^j\partial s_2^k}\phi_{XY}(s_1,s_2)|_{s_1=0,s_2=0}
 +
\end{align}</math></center>
 +
 +
 +
----
 +
 +
== References ==
 +
 +
* [https://engineering.purdue.edu/~comerm/ M. Comer]. ECE 600. Class Lecture. [https://engineering.purdue.edu/~comerm/600 Random Variables and Signals]. Faculty of Electrical Engineering, Purdue University. Fall 2013.
 +
 +
 +
----
 +
 +
==[[Talk:ECE600_F13_Joint_Expectation_mhossain|Questions and comments]]==
 +
 +
If you have any questions, comments, etc. please post them on [[Talk:ECE600_F13_Joint_Expectation_mhossain|this page]]
 +
 +
 +
----
 +
 +
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]

Latest revision as of 11:12, 21 May 2014

Back to all ECE 600 notes

The Comer Lectures on Random Variables and Signals

Slectures by Maliha Hossain


Topic 14: Joint Expectation



Joint Expectation

Given random variables X and Y, let Z = g(X,Y) for some g:R$ _2 $→R. Then E[Z] can be computed using f$ _Z $(z) or p$ _Z $(z) in the original definition of E[ ]. Or, we can use

$ E[Z] = \int\int_{\mathbb R^2}g(x,y)f_{XY}(x,y)dxdy $

or

$ E[Z]=\sum_{x\in\mathcal R_x}\sum_{y\in\mathcal R_y}g(x,y)p_{XY}(x,y) $

The proof is in Papoulis.

We will use joint expectation to define some important moments that help characterize the joint behavior of X and Y.

Note that joint expectation is a linear operator, so if g$ _1 $,...,g$ _n $ are n functions from R$ ^2 $ to R and a$ _1 $,...,a$ _n $ are constants, then

$ E\left[\sum_{i=1}^na_ig_i(X,Y)\right]=\sum_{i=1}^na_iE[g_i(X,Y)] $



Important Moments for X,Y

We still need $ \mu_X $, $ \mu_Y $, $ \sigma_X $$ ^2 $, $ \sigma_X $$ ^2 $, the means and variances of X and Y. Other moments that are of great interest are:

  • The correlation between X and Y is
$ \mbox{Corr}(X,Y)\equiv E[XY] $
  • The covariance of X and Y
$ \mbox{Cov}(X,Y)\equiv E[(X-\mu_X)(Y-\mu_Y)] $
  • The correlation coefficient of X and Y is
$ r_{XY}\equiv\frac{\mbox{Cov}(X,Y)}{\sigma_X\sigma_Y} $
  • Note:
    • |r$ _{XY} $| ≤ 1 (proof)
    • If X and Y are independent, then r$ _{XY} $ = 0. The converse is not true in general.
  • If r$ _{XY} $=0, then X and Y are said to be uncorrelated. It can be shown that
    • X and Yare uncorrelated iff Cov(X,Y)=0 (proof).
    • X and Y are uncorrelated iff E[XY] = $ \mu_X\mu_Y $ (proof).
  • X and Y are orthogonal if E[XY]=0.



The Cauchy Schwarz Inequality

For random variables X and Y,

$ |E[XY]|\leq\sqrt{E[X^2]E[Y^2]} $

with equality iff Y = a$ _0 $X with probability 1, where a$ _0 $ is a constant. Note that "equality with probability 1" will be defined later.

Proof: $ \qquad $ We start by considering

$ 0\leq E[(aX-Y)^2]=a^2E[X^2]-2aE[XY]+E[Y^2] $

which is a quadratic function of a ∈ R. Consider two cases:

(i)$ \; $ E[(aX-Y)^2] > 0
(ii) E[(aX-Y)^2] = 0

Case (i):

$ E[X^2]a^2-2E[XY]a+E[Y^2]>0 \ $


Fig 1: A possible depiction of the quadratic when the discriminant is greater than zero.

Since this quadratic is greater than 0 for all a, there are no real roots. There must be two complex roots. From the quadratic equation, this means that

$ E[XY] < \sqrt{E[X^2]E[Y^2]} $

Case (ii):

$ E[(aX-Y)^2]=0 \ $

In this case

$ E[X^2]a^2-2E[XY]a+E[Y^2]=0 \ $


Fig 2: A possible depiction of the quadratic when the discriminant is equal to zero.


This means that ∃a ∈ R such that

$ E[(a_0X-Y)^2] = 0 \ $

It can be shown that if a random variable X has E[X$ ^2 $]=0, then X=0 except possibly on a set of probability 0. Note that previously, we have defined equality between random variables X and Y to mean

$ X=Y\;\mbox{iff}\;X(\omega)=Y(\omega)\;\forall\omega\in\mathcal S $

With the same notion of equality, we would have that

$ X=0\;\mbox{iff}\;X(\omega)=0\;\forall\omega\in\mathcal S $

However, the result for the case E[X$ ^2 $]=0 is that X=0 with probability 1, which means that there is a set A = {$ \omega $S: X($ \omega $) = 0} with P(A) = 1.

Returning to the case E[(a$ _0 $X-Y)$ ^2 $]=0, we get that Y = a$ _0 $X for some a$ _0 $R, with probability 1.
Thus we have shown that

$ E[XY]=\sqrt{E[X^2]E[Y^2]} $

with equality iff Y = a$ _0 $X with probability 1.



The Correlation Coefficient for Jointly Gaussian Random Variables X and Y

We have previously seen that the joint density function for Gaussian X and Y contains a parameter r. It can be shown that this r is the correlation coeffecient of X and Y:

$ r = \frac{E[XY]-\mu_X\mu_Y}{\sigma_X\sigma_Y} $

Note that one way to show this is to use a concept called iterated expectation, which we will cover later.



Joint Moments

Definition $ \qquad $ The joint moments of X and Y are

$ \mu_{jk}\equiv E[X^jY^k] $

and the joint central moments are

$ \sigma_{jk}=E[(X-\overline{X})^j(Y-\overline{Y})^k] $

for j = 0,1,...; k = 0,1,...



Joint Characteristic Function

Definition $ \qquad $ The joint characteristic function of X and Y is

$ \Phi_{XY}(\omega_1,\omega_2)\equiv E[e^{i(\omega_1X+\omega_2Y)}] $

for $ \omega_1,\omega_2 $R.

If X and Y are continuous, we write this as

$ \Phi_{XY}(\omega_1,\omega_2)=\int\int_{\mathbf R^2}e^{i(\omega_1x+\omega_2y)}f_{XY}(x,y)dxdy $

If X and Y are discrete, we use

$ \Phi_{XY}(\omega_1,\omega_2)=\sum_{x\in\mathcal R_x}\sum_{y\in\mathcal R_y}e^{i(\omega_1x+\omega_2y)}p_{XY}(x,y) $

Note:

$ \bullet\; \Phi_X(\omega)=\Phi_{XY}(\omega,0);\quad\Phi_Y(\omega)=\Phi_{XY}(0,\omega) $
(proof)
$ \bullet\; Z = aX+bY \;\Rightarrow\;\Phi_Z(\omega) =\Phi_{XY}(a\omega,b\omega) $
(proof)
$ \bullet\; X \perp\!\!\!\perp Y \;\mbox{iff}\;\Phi_{XY}(\omega_1,\omega_2)=\Phi_X(\omega_1)\Phi_Y(\omega_2) $
(proof)
$ \bullet\; X \perp\!\!\!\perp Y \;\mbox{and}\;Z=X+Y\;\Rightarrow\Phi_{Z}(\omega)=\Phi_X(\omega)\Phi_Y(\omega) $
(proof)



Moment Generating Function

The joint moment generating function of X and Y is

$ \phi_{XY}(s_1,s_2)=E[e^{s_1X+s_2Y}];\qquad s_1,s_2\in\mathbb C $

Then it can be shown that

$ \begin{align} \mu_{jk}&=E[X^jY^k] \\ &=\frac{\partial^j\partial^k}{\partial s_1^j\partial s_2^k}\phi_{XY}(s_1,s_2)|_{s_1=0,s_2=0} \end{align} $



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett