m (Protected "ECE600 F13 Independent Random Variables mhossain" [edit=sysop:move=sysop])
 
(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
 
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
  
 +
 +
[[Category:ECE600]]
 +
[[Category:probability]]
 +
[[Category:lecture notes]]
 +
[[Category:slecture]]
  
 
<center><font size= 4>
 
<center><font size= 4>
'''Random Variables and Signals'''
+
[[ECE600_F13_notes_mhossain|'''The Comer Lectures on Random Variables and Signals''']]
 
</font size>
 
</font size>
 +
 +
[https://www.projectrhea.org/learning/slectures.php Slectures] by [[user:Mhossain | Maliha Hossain]]
 +
  
 
<font size= 3> Topic 12: Independent Random Variables</font size>
 
<font size= 3> Topic 12: Independent Random Variables</font size>
 
</center>
 
</center>
 
  
 
----
 
----
 
+
----
 
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and Y.  
 
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and Y.  
  
Line 41: Line 48:
 
\end{align}</math></center>
 
\end{align}</math></center>
  
Thus, X and Y are independent iff f<math>_{XY}</math>(x,y) = f<math>_X</math>f)X<math>_Y</math>.
+
Thus, X and Y are independent iff f<math>_{XY}</math>(x,y) = f<math>_X</math>(x)f<math>_Y</math>(y).
  
  

Latest revision as of 11:12, 21 May 2014

Back to all ECE 600 notes

The Comer Lectures on Random Variables and Signals

Slectures by Maliha Hossain


Topic 12: Independent Random Variables



We have previously defined statistical independence of two events A and b in F. We will now use that definition to define independence of random variables X and Y.

Definition $ \qquad $ Two random variables X and Y on (S,F,P) are statistically independent if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ F. i.e.

$ P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F $

There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff

$ f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R $


First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then,

$ \begin{align} F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\ &= P(X\in A,Y\in B) \\ &= P(X\in A)P(Y\in B) \\ &= P(X\leq x)P(Y\leq y) \\ &= F_X(x)F_Y(y) \\ \Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y) \end{align} $

Now assume that f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y) ∀x,y ∈ R. Then, for any A,B ∈ B(R)

$ \begin{align} P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\ &=\int_A\int_Bf_X(x)f_Y(y)dydx \\ &=\int_Af_X(x)dx\int_Bf_Y(y)dy \\ &= P(X\in A)P(Y\in B) \end{align} $

Thus, X and Y are independent iff f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y).



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett