Line 23: Line 23:
  
  
<math>Insert formula here</math>
+
<math>E_\infty = \sum_{n=-\infty}^\infty |x[n]|^2,dt</math>
  
  
Line 29: Line 29:
  
  
<math>P_\infty = \int_{-T}^T |x(t)|^2\,dt)</math>  
+
<math>E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt)</math>  
  
  

Revision as of 18:52, 9 September 2008

Phasors

$ x(t)=Ae^{j\theta+\phi} $

Where A is the radius of the phasor and $ \phi $ if the offset.

Useful Phasors Facts

$ e^{j\theta} = \cos{\theta}+j\sin{\theta} $

$ Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi} $

$ \cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2} $

$ \sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

$ |e^{j\theta}|=1 $


Energy

Discrete

$ E_\infty = \sum_{n=-\infty}^\infty |x[n]|^2,dt $


Continuous

$ E_\infty = \int_{-\infty}^\infty |x(t)|^2\,dt) $


Power

Discrete

Continuous

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt) $


Geometric Series

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett