Line 12: Line 12:
  
 
<math>\cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 
<math>\cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2}</math>
 +
 +
<math>\sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j}</math>

Revision as of 18:05, 9 September 2008

Phasors

$ x(t)=Ae^{j\theta+\phi} $

Where A is the radius of the phasor and $ \phi $ if the offset.

Useful Phasors Facts

$ e^{j\theta} = \cos{\theta}+j\sin{\theta} $

$ Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi} $

$ \cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2} $

$ \sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood