(New page: ==Homework 4 - 4.4b== Solution to Prob 4.4b Its given that X(jw) = <math> ~2, ~~0 \le \omega \le 2 </math> <math> -2, ~~-2 \le \omega < 0 </math> <math> ~0, ~~|\omega| > 2 </math> <ma...)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Homework 4 - 4.4b==
+
[[Category:ECE301Summer08asan]]
 +
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Homework]]
 
Solution to Prob 4.4b
 
Solution to Prob 4.4b
  

Latest revision as of 06:13, 5 January 2009

Solution to Prob 4.4b

Its given that X(jw) =

$ ~2, ~~0 \le \omega \le 2 $

$ -2, ~~-2 \le \omega < 0 $

$ ~0, ~~|\omega| > 2 $

$ \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega $

$ \Rightarrow ~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega $


$ \Rightarrow ~~~~~~~= \frac {e^{j2t} - 1}{jt\pi} - \frac {1 - e^{-j2t}}{jt\pi} $

$ \Rightarrow ~~~~~~~= \left ( \frac {e^{j2t} + e^{-j2t} - 2}{jt\pi} \right ) $

$ \Rightarrow ~~~~~~~= \left ( \frac {2\cos(2t) -2}{jt\pi} \right ) $

$ \Rightarrow ~~~~~~~= \frac {-(4j\sin^2(t))}{t\pi} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal