(New page: ==Homework 4 - 4.4b== Solution to Prob 4.4b Its given that X(jw) = <math> ~2, ~~0 \le \omega \le 2 </math> <math> -2, ~~-2 \le \omega < 0 </math> <math> ~0, ~~|\omega| > 2 </math> <ma...) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:ECE301Summer08asan]] | |
+ | [[Category: ECE]] | ||
+ | [[Category: ECE 301]] | ||
+ | [[Category: Summer]] | ||
+ | [[Category: 2008]] | ||
+ | [[Category: asan]] | ||
+ | [[Category: Homework]] | ||
Solution to Prob 4.4b | Solution to Prob 4.4b | ||
Latest revision as of 06:13, 5 January 2009
Solution to Prob 4.4b
Its given that X(jw) =
$ ~2, ~~0 \le \omega \le 2 $
$ -2, ~~-2 \le \omega < 0 $
$ ~0, ~~|\omega| > 2 $
$ \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega $
$ \Rightarrow ~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega $
$ \Rightarrow ~~~~~~~= \frac {e^{j2t} - 1}{jt\pi} - \frac {1 - e^{-j2t}}{jt\pi} $
$ \Rightarrow ~~~~~~~= \left ( \frac {e^{j2t} + e^{-j2t} - 2}{jt\pi} \right ) $
$ \Rightarrow ~~~~~~~= \left ( \frac {2\cos(2t) -2}{jt\pi} \right ) $
$ \Rightarrow ~~~~~~~= \frac {-(4j\sin^2(t))}{t\pi} $