(New page: hello world)
 
(Results)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
hello world
+
== Matlab Code ==
 +
<pre>
 +
  %% Joshua Long
 +
  %% ECE 301
 +
  %% HW 1.1 Playing Music
 +
 
 +
  %% clear memory
 +
  clear
 +
 
 +
  %% clear console
 +
  clc
 +
 
 +
  delta = .00005;
 +
 
 +
  tempo = 60/140;
 +
 
 +
  %%Values for note lengths
 +
  hn = 0:delta:2*tempo;
 +
  qn = 0:delta:tempo;
 +
  en = 0:delta:.5*tempo;
 +
  dqn = 0:delta:1.5*tempo;
 +
 
 +
  %%Values for note lengths for Twice the tempo
 +
  thn = 0:delta:.5*2*tempo;
 +
  tqn = 0:delta:.5*tempo;
 +
  ten = 0:delta:.5*.5*tempo;
 +
  tdqn = 0:delta:.5*1.5*tempo;
 +
 
 +
  %%Values for the freq. of notes
 +
  Eb = 311.13;
 +
  F = 349.23;
 +
  G = 392.00;
 +
  Ab = 415.30;
 +
  Bb = 466.16;
 +
  C = 523.25;
 +
 
 +
  %%Regular Tempo
 +
  y = [sin(2*pi*Eb*hn),sin(2*pi*F*qn),sin(2*pi*G*qn),sin(2*pi*Ab*dqn),sin(2*pi*Bb*en), sin(2*pi*C*qn)];
 +
  %%Transformation of x(t) = y(2)
 +
  x = [sin(2*pi*2*Eb*hn),sin(2*pi*2*F*qn),sin(2*pi*2*G*qn),sin(2*pi*2*Ab*dqn),sin(2*pi*2*Bb*en), sin(2*pi*2*C*qn)];
 +
  %%Tempo Twice as Fast
 +
  z = [sin(2*pi*Eb*thn),sin(2*pi*F*tqn),sin(2*pi*G*tqn),sin(2*pi*Ab*tdqn),sin(2*pi*Bb*ten), sin(2*pi*C*tqn)];
 +
 
 +
  sound(y,1/delta);
 +
  sound(z,1/delta);
 +
  sound(x,1/delta);
 +
 
 +
  %%Save a wav file:
 +
  wavwrite([y,z,x],44100/2.2,32,'N:\Personal\ECE301\Hail_Purdue.wav');
 +
 
 +
</pre>
 +
 
 +
 
 +
== Results ==
 +
 
 +
The [[Media:JAL_Hail_Purdue.wav _ECE301Fall2008mboutin| audio file]] contains the regular Hail Purdue followed by the tune being played twice as fast followed by the y(t)=x(2t) transformation.
 +
 
 +
The first two have the same sounding notes but the 2nd is just half the time to play. However, the last one made the frequency twice as fast and made it half the tempo.

Latest revision as of 07:17, 5 September 2008

Matlab Code

  %% Joshua Long
  %% ECE 301
  %% HW 1.1 Playing Music
  
  %% clear memory
  clear
  
  %% clear console
  clc
  
  delta = .00005;
  
  tempo = 60/140;
  
  %%Values for note lengths
  hn = 0:delta:2*tempo;
  qn = 0:delta:tempo;
  en = 0:delta:.5*tempo;
  dqn = 0:delta:1.5*tempo;
  
  %%Values for note lengths for Twice the tempo
  thn = 0:delta:.5*2*tempo;
  tqn = 0:delta:.5*tempo;
  ten = 0:delta:.5*.5*tempo;
  tdqn = 0:delta:.5*1.5*tempo;
  
  %%Values for the freq. of notes
  Eb = 311.13;
  F = 349.23;
  G = 392.00;
  Ab = 415.30;
  Bb = 466.16;
  C = 523.25;
  
  %%Regular Tempo
  y = [sin(2*pi*Eb*hn),sin(2*pi*F*qn),sin(2*pi*G*qn),sin(2*pi*Ab*dqn),sin(2*pi*Bb*en), sin(2*pi*C*qn)];
  %%Transformation of x(t) = y(2)
  x = [sin(2*pi*2*Eb*hn),sin(2*pi*2*F*qn),sin(2*pi*2*G*qn),sin(2*pi*2*Ab*dqn),sin(2*pi*2*Bb*en), sin(2*pi*2*C*qn)];
  %%Tempo Twice as Fast
  z = [sin(2*pi*Eb*thn),sin(2*pi*F*tqn),sin(2*pi*G*tqn),sin(2*pi*Ab*tdqn),sin(2*pi*Bb*ten), sin(2*pi*C*tqn)];
  
  sound(y,1/delta);
  sound(z,1/delta);
  sound(x,1/delta);
  
  %%Save a wav file:
  wavwrite([y,z,x],44100/2.2,32,'N:\Personal\ECE301\Hail_Purdue.wav');

 


Results

The audio file contains the regular Hail Purdue followed by the tune being played twice as fast followed by the y(t)=x(2t) transformation.

The first two have the same sounding notes but the 2nd is just half the time to play. However, the last one made the frequency twice as fast and made it half the tempo.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett