Line 23: Line 23:
 
It can be rewritten as  
 
It can be rewritten as  
 
<div style="text-align: center;">  <math>\int_R p(\textbf{x}') d\textbf{x}' \simeq p(\textbf{x})V \simeq \frac{k}{n}</math>, </div>
 
<div style="text-align: center;">  <math>\int_R p(\textbf{x}') d\textbf{x}' \simeq p(\textbf{x})V \simeq \frac{k}{n}</math>, </div>
if we assume a small local region $R$, a large number of samples $n$, and $k$ of $n$ falling in $R$.\\
+
if we assume a small local region <math>R</math>, a large number of samples <math>n</math>, and <math>k</math> of <math>n</math> falling in <math>R</math>.\\
Suppose that the region $R$ is a $d$-dimensional hypercube around $\textbf{x}_i \in \mathbb{R}^n$ in the rest of this slecture, and let the volume $V_n$:  
+
Suppose that the region <math>R</math> is a <math>d</math>-dimensional hypercube around <math>\textbf{x}_i \in \mathbb{R}^n</math> in the rest of this slecture, and let the volume <math>V_n</math>:  
 
<div style="text-align: center;">  <math>V_n = h_n^d</math> </div>
 
<div style="text-align: center;">  <math>V_n = h_n^d</math> </div>
where $h_n$ is the length of an edge. Then the window function for this hypercube can be defined by
+
where <math>h_n</math> is the length of an edge. Then the window function for this hypercube can be defined by
 
<div style="text-align: center;">  <math>\varphi(\textbf{u}) = \left\{ \begin{array}{ccc} 1, & |u_j| \leq \frac{1}{2} & j = 1, ..., d \\ 0, & else. & \end{array} \right.</math> </div>
 
<div style="text-align: center;">  <math>\varphi(\textbf{u}) = \left\{ \begin{array}{ccc} 1, & |u_j| \leq \frac{1}{2} & j = 1, ..., d \\ 0, & else. & \end{array} \right.</math> </div>
  

Revision as of 07:03, 30 April 2014


Parzen window method and classification

A slecture by ECE student Chiho Choi

Partly based on the ECE662 Spring 2014 lecture material of Prof. Mireille Boutin.


in progess....


Unlike parametric density estimation methods, non-parametric approaches locally estimate density function by a small number of neighboring samples [4] and therefore show less accurate estimation results. In spite of their accuracy, however, the performance of classifiers designed using these estimates is very satisfactory.


The basic idea for estimating unknown density function is based on the fact that the probability $ P $ that a vector x belongs to a region $ R $ [1]:

$ P = \int_R p(\textbf{x}') d\textbf{x}' $.

It can be rewritten as

$ \int_R p(\textbf{x}') d\textbf{x}' \simeq p(\textbf{x})V \simeq \frac{k}{n} $,

if we assume a small local region $ R $, a large number of samples $ n $, and $ k $ of $ n $ falling in $ R $.\\ Suppose that the region $ R $ is a $ d $-dimensional hypercube around $ \textbf{x}_i \in \mathbb{R}^n $ in the rest of this slecture, and let the volume $ V_n $:

$ V_n = h_n^d $

where $ h_n $ is the length of an edge. Then the window function for this hypercube can be defined by

$ \varphi(\textbf{u}) = \left\{ \begin{array}{ccc} 1, & |u_j| \leq \frac{1}{2} & j = 1, ..., d \\ 0, & else. & \end{array} \right. $



Post your slecture material here. Guidelines:

  • If you are making a text slecture
    • Type text using wikitext markup languages
    • Type all equations using latex code between <math> </math> tags.
    • You may include links to other Project Rhea pages.

$ \rightarrow $




Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE662, Spring 2014

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva