Line 1: Line 1:
Let define a n-by-n matrix A and a non-zero vector <math>\vec{x}\in\mathbb{R}^{n}</math>. If there exists a scalar value <math>\lambda</math> which satisfies the vector equationA <math>\vec{x}=\lambda\vec{x}</math>,
+
Let define a n-by-n matrix A and a non-zero vector <math>\vec{x}\in\mathbb{R}^{n}</math>. If there exists a scalar value <math>\lambda</math> which satisfies the vector equation <math>A\vec{x}=\lambda\vec{x}</math>, we define <math>\lambda</math>
we define \lambda
+
   as an eigenvalue of the matrix A, and the corresponding non-zero vector <math>\vec{x}</math> is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation <math>D(\lambda)=det\left(A-\lambda I\right)</math> is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by  
   as an eigenvalue of the matrix A
+
 
, and the corresponding non-zero vector \vec{x}
+
<math><center>A=\left[\begin{matrix}-5 & 2\\
  is called an eigenvector of the matrix A
+
. To determine eigenvalues and eigenvectors a characteristic equation D(\lambda)=det\left(A-\lambda I\right)
+
  is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A
+
  is given by A=\left[\begin{matrix}-5 & 2\\
+
 
2 & -2
 
2 & -2
\end{matrix}\right].
+
\end{matrix}\right]<center></math>.
 +
 
 
  Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
 
  Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
 
   By solving the quadratic equation for \lambda
 
   By solving the quadratic equation for \lambda

Revision as of 11:32, 29 April 2014

Let define a n-by-n matrix A and a non-zero vector $ \vec{x}\in\mathbb{R}^{n} $. If there exists a scalar value $ \lambda $ which satisfies the vector equation $ A\vec{x}=\lambda\vec{x} $, we define $ \lambda $

 as an eigenvalue of the matrix A, and the corresponding non-zero vector $ \vec{x} $ is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation $ D(\lambda)=det\left(A-\lambda I\right) $ is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by 

$ <center>A=\left[\begin{matrix}-5 & 2\\ 2 & -2 \end{matrix}\right]<center> $.

Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
 By solving the quadratic equation for \lambda
, we will have two eigenvalues \lambda_{1}=-1
 and \lambda_{2}=-6
. By substituting \lambda's
 into Eq [eq:1]

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett