(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:ECE301Summer08asan]]
 +
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 +
[[Category: Homework]]
 
Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.  
 
Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.  
  

Latest revision as of 06:09, 5 January 2009

Express each of the following complex numbers in polar form, and plot them in the complex plane, indicating the magnitude and angle of each number.

A) $ 1 + j\sqrt{3} $

$ r = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 $

$ \theta = arctan(\sqrt{3}/1) = arctan(\sqrt{3}) = \frac{\pi}{3} $

Therefore the polar form of this complex number is: $ 2e^{j\frac{\pi}{3}} $

B) $ -5 $

$ r = 5 $

$ \theta = \pi $

Therefore the polar form of this complex number is: $ 5e^{j\pi} $

F) $ (1 + j)^{5} $

$ r = \sqrt{1^2 + 1^2} = \sqrt{2} $

$ \theta = \frac{\pi}{4} $

$ (1 + j) = \sqrt{2}e^{j\frac{\pi}{4}} $

$ (1 + j)^{5} = (\sqrt{2}e^{j\frac{\pi}{4}})^{5} = 2^{\frac{5}{2}}e^{j\frac{5\pi}{4}} = 4\sqrt{2}e^{j(\pi + \frac{\pi}{4})} =4\sqrt{2}e^{j\pi}e^{j\frac{\pi}{4}} = -4(\sqrt{2}e^{j\frac{\pi}{4}}) = -4(1 + j) $

Therefore the polar form of this complex number is: $ -4(\sqrt{2}e^{j\frac{\pi}{4}}) $

I) $ \frac{1 + j\sqrt{3}}{\sqrt{3} + j} $

$ r = 2 $

$ Equation 1 = 1 + j\sqrt{3} => \theta_{1} = \frac{\pi}{3} $

$ Equation 2 = \sqrt{3} + j => \theta_{2} = \frac{\pi}{6} $

$ \frac{2e^{j\frac{\pi}{3}}}{2e^{j\frac{\pi}{6}}} = \frac{e^{j\frac{\pi}{3}}}{e^{j\frac{\pi}{6}}} = e^{j(\frac{\pi}{3} - \frac{\pi}{6})} = e^{j\frac{\pi}{6}} $

Therefore the polar form of this complex number is: $ e^{j\frac{\pi}{6}} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn