Line 1: Line 1:
=                                             Bayes Parameter Estimation (BPE) tutorial =
+
=                                             '''Bayes Parameter Estimation (BPE) tutorial''' =
  
 
                                                A [https://www.projectrhea.org/learning/slectures.php slecture] by [https://kiwi.ecn.purdue.edu/rhea/index.php/ECE ECE] student Haiguang Wen  
 
                                                A [https://www.projectrhea.org/learning/slectures.php slecture] by [https://kiwi.ecn.purdue.edu/rhea/index.php/ECE ECE] student Haiguang Wen  
  
                       Partially based on the [https://kiwi.ecn.purdue.edu/rhea/index.php/2014_Spring_ECE_662_Boutin ECE662 lecture] material of [https://engineering.purdue.edu/~mboutin/ Prof. Mireille Boutin.]
+
                       Partially based on the [https://kiwi.ecn.purdue.edu/rhea/index.php/2014_Spring_ECE_662_Boutin ECE662 lecture] material of [https://engineering.purdue.edu/~mboutin/ Prof. Mireille Boutin.]  
 +
 
 +
----
 +
 
 +
== '''&nbsp;What will you learn from this slecture?'''<br> ==
 +
 
 +
*Basic knowledge of Bayes parameter estimation
 +
*An example to illustrate the concept and properties of BPE
 +
*The effect of sample size on the posterior
 +
*The effect of prior on the posterior
 +
 
 +
 
 +
 
 +
----
 +
 
 +
== '''Introduction''' ==
 +
Bayes parameter estimation (BPE) is a widely used technique for estimating the probability density function of random variables with unknown parameters. Suppose that we have an observable random variable X for an experiment and its distribution depends on unknown parameter θ taking values in a parameter space Θ. The probability density function of X for a given value of θ is denoted by p(x|θ ). It should be noted that the random variable X and the parameter θ can be vector-valued. Now we obtain a set of independent observations or samples S = {x1,x2,...,xn} from an experiment. Our goal is to compute p(x|S) which is as close as we can come to obtain the unknown p(x), the probability density function of X.

Revision as of 10:42, 23 April 2014

                                            Bayes Parameter Estimation (BPE) tutorial

                                                A slecture by ECE student Haiguang Wen

                       Partially based on the ECE662 lecture material of Prof. Mireille Boutin.


 What will you learn from this slecture?

  • Basic knowledge of Bayes parameter estimation
  • An example to illustrate the concept and properties of BPE
  • The effect of sample size on the posterior
  • The effect of prior on the posterior



Introduction

Bayes parameter estimation (BPE) is a widely used technique for estimating the probability density function of random variables with unknown parameters. Suppose that we have an observable random variable X for an experiment and its distribution depends on unknown parameter θ taking values in a parameter space Θ. The probability density function of X for a given value of θ is denoted by p(x|θ ). It should be noted that the random variable X and the parameter θ can be vector-valued. Now we obtain a set of independent observations or samples S = {x1,x2,...,xn} from an experiment. Our goal is to compute p(x|S) which is as close as we can come to obtain the unknown p(x), the probability density function of X.

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman