Line 15: Line 15:
 
'''1. Introduction'''
 
'''1. Introduction'''
  
This slecture describes the theoretical upper bounds for Bayes Error. First, in chapter 2, the error bound is expressed in terms of the Bayes classifiers. This error bound expression includes a $min$ function that by using a lemma, the $min$ function can be replaced with the expression of a theoretical error bound. In chapter 3, we specifically derive the Chernoff bound for the Normally distributed data. We also derive the Chernoff distance in the case of Normally distributed data. In section 3.2, some examples for the Chernoff bound are provided.
+
This slecture describes the theoretical upper bounds for Bayes Error. First, in chapter 2, the error bound is expressed in terms of the Bayes classifiers. This error bound expression includes a ''min'' function that by using a lemma, the ''min'' function can be replaced with the expression of a theoretical error bound. In chapter 3, we specifically derive the Chernoff bound for the Normally distributed data. We also derive the Chernoff distance in the case of Normally distributed data. In section 3.2, some examples for the Chernoff bound are provided.
  
 
The materials given in this lecture are based on the lecture notes and the discussions that were shared in Prof. Boutin's ECE662 Spring 2014 course at Purdue University. Examples were designed to reflect the theories taught in the class.
 
The materials given in this lecture are based on the lecture notes and the discussions that were shared in Prof. Boutin's ECE662 Spring 2014 course at Purdue University. Examples were designed to reflect the theories taught in the class.
Line 23: Line 23:
  
 
'''2.1 Classifier using Bayes rule'''
 
'''2.1 Classifier using Bayes rule'''
 +
 
To classify the dataset of feature vectors with ''C'' labels, we choose class <math>w_{i}</math> where
 
To classify the dataset of feature vectors with ''C'' labels, we choose class <math>w_{i}</math> where
  
<math>\arg \max_{\omega_{i}  \in  \big\{\omega_{1}, \cdots ,\omega_{c}\big\} }  Prob \big(  \omega_{i}  \mid x \big). </math>
+
<math> \arg\max_{\omega_{i}  \in  \big\{\omega_{1}, \cdots ,\omega_{c}\big\} }  Prob \big(  \omega_{i}  \mid x \big). </math>
 +
 
 +
 
 +
However, it is difficult to directly estimate <math> Prob \big( \omega_{i} \mid x \big) </math>. So instead of solving eq. ... , we use the Bayes rule to change the problem to
 +
 
 +
 
 +
<math>\arg\max_{\omega_{i}  \in  \big\{\omega_{1}, \cdots ,\omega_{c}\big\} }  \rho  \big(x \mid  \omega _{i}\big) Prob \big( \omega _{i}\big) </math>.
 +
 
 +
As can be seen from eq. ..., we need to know all the distributions and priors of the classes in the dataset to apply the Bayesian classifier. If the distributions and priors in the dataset is all known, the Bayesian classifier is an optimal classifier since the decision taken following Bayes rule minimizes the probability of error.
 +
 
  
 
'''2.2 Upper Bounds for Bayes Error'''
 
'''2.2 Upper Bounds for Bayes Error'''
 +
 +
The expected value of the error when deciding following the Bayes rule can be computed as below.
 +
 +
<math> E \big(error\big) =  \int_\Re  Prob  \big(error  \mid x\big)  \rho \big(x\big)  dx</math>
 +
 +
<math>=  \int_\Re  min  \big( Prob  \big( \omega _{1}  \mid x\big), Prob  \big( \omega _{2} \mid x\big) \big)  \rho \big(x\big)  dx </math>
 +
 +
<math>=  \int_\Re  min  \big( \rho  \big( x  \mid \omega _{1}\big) Prob  \big(\omega _{1}\big) , \rho  \big( x \mid \omega _{2}\big) Prob  \big(\omega _{2}\big) \big)  dx</math>
 +
 +
And we can obtain the upper bound for eq. ... using the following lemma.
 +
 +
<math>min  \big\{a, b\big\}  \leq a^ \beta b^{1-\beta}</math>
 +
 +
where <math>\forall a,b \geq 0</math> and <math>0 \leq \beta \leq 1</math>. Therefore, from eq. ... and ..., we can derive the following error bound.
 +
 +
<math>E \big(error\big)  \leq \int_\Re  \big( \rho  \big(x \mid \omega _{1}\big) Prob  \big(\omega_{1}\big)  \big) ^ \beta  \big( \rho  \big(x \mid \omega _{2}\big) Prob  \big(\omega_{2}\big)  \big) ^{1- \beta } dx =  \varepsilon _ \beta </math>
 +
 +
Eq. ... is called Chernoff Bound. This is the error bound that can be computed given the full knowledge of probability of each class.
 +
 +
Since priors are independent of ''x'', we can take priors out of the integral.
 +
 +
<math>\varepsilon _ \beta = Prob  \big(\omega_{1}\big) ^\beta  Prob  \big(\omega_{2}\big) ^{1-\beta} \int_\Re  \rho  \big(x \mid \omega _{1}\big)    ^ \beta  \big( \rho  \big(x \mid \omega _{2}\big)    \big) ^{1- \beta } dx</math>
 +
 +
For the specific case where <math>\beta=\frac{1}{2}</math>, we call <math>\varepsilon_{\frac{1}{2}}</math> as Bhattacharyya bound.
 +
 +
The smallest of such bound in eq. ...
 +
 +
<math>S  := \min_{\beta \in  \left[ 0,1 \right] } \big( \varepsilon _{\beta}\big) </math>
 +
 +
is also sometimes called the Chernoff Bound. This can be used as a error bound since the Bayes error lies somewhere in between 0 and <math>\min\big( \varepsilon _{\beta}\big) </math>.
 +
 +
The Chernoff bound  <math> \varepsilon _{\beta}</math> is the probability of error as a function of <math>\beta</math>. It is usually used for two-category cases and if to be used for multi-category cases, the error bound can be split into several two-category cases and add up all to form the final error bound.
 +
  
  

Revision as of 18:33, 14 April 2014

Upper Bounds for Bayes Error
A slecture by Jeehyun Choe

(partially based on Prof. Mireille Boutin's ECE 662 lecture)




1. Introduction

This slecture describes the theoretical upper bounds for Bayes Error. First, in chapter 2, the error bound is expressed in terms of the Bayes classifiers. This error bound expression includes a min function that by using a lemma, the min function can be replaced with the expression of a theoretical error bound. In chapter 3, we specifically derive the Chernoff bound for the Normally distributed data. We also derive the Chernoff distance in the case of Normally distributed data. In section 3.2, some examples for the Chernoff bound are provided.

The materials given in this lecture are based on the lecture notes and the discussions that were shared in Prof. Boutin's ECE662 Spring 2014 course at Purdue University. Examples were designed to reflect the theories taught in the class.


2. Upper Bounds for Bayes Error

2.1 Classifier using Bayes rule

To classify the dataset of feature vectors with C labels, we choose class $ w_{i} $ where

$ \arg\max_{\omega_{i} \in \big\{\omega_{1}, \cdots ,\omega_{c}\big\} } Prob \big( \omega_{i} \mid x \big). $


However, it is difficult to directly estimate $ Prob \big( \omega_{i} \mid x \big) $. So instead of solving eq. ... , we use the Bayes rule to change the problem to


$ \arg\max_{\omega_{i} \in \big\{\omega_{1}, \cdots ,\omega_{c}\big\} } \rho \big(x \mid \omega _{i}\big) Prob \big( \omega _{i}\big) $.

As can be seen from eq. ..., we need to know all the distributions and priors of the classes in the dataset to apply the Bayesian classifier. If the distributions and priors in the dataset is all known, the Bayesian classifier is an optimal classifier since the decision taken following Bayes rule minimizes the probability of error.


2.2 Upper Bounds for Bayes Error

The expected value of the error when deciding following the Bayes rule can be computed as below.

$ E \big(error\big) = \int_\Re Prob \big(error \mid x\big) \rho \big(x\big) dx $

$ = \int_\Re min \big( Prob \big( \omega _{1} \mid x\big), Prob \big( \omega _{2} \mid x\big) \big) \rho \big(x\big) dx $

$ = \int_\Re min \big( \rho \big( x \mid \omega _{1}\big) Prob \big(\omega _{1}\big) , \rho \big( x \mid \omega _{2}\big) Prob \big(\omega _{2}\big) \big) dx $

And we can obtain the upper bound for eq. ... using the following lemma.

$ min \big\{a, b\big\} \leq a^ \beta b^{1-\beta} $

where $ \forall a,b \geq 0 $ and $ 0 \leq \beta \leq 1 $. Therefore, from eq. ... and ..., we can derive the following error bound.

$ E \big(error\big) \leq \int_\Re \big( \rho \big(x \mid \omega _{1}\big) Prob \big(\omega_{1}\big) \big) ^ \beta \big( \rho \big(x \mid \omega _{2}\big) Prob \big(\omega_{2}\big) \big) ^{1- \beta } dx = \varepsilon _ \beta $

Eq. ... is called Chernoff Bound. This is the error bound that can be computed given the full knowledge of probability of each class.

Since priors are independent of x, we can take priors out of the integral.

$ \varepsilon _ \beta = Prob \big(\omega_{1}\big) ^\beta Prob \big(\omega_{2}\big) ^{1-\beta} \int_\Re \rho \big(x \mid \omega _{1}\big) ^ \beta \big( \rho \big(x \mid \omega _{2}\big) \big) ^{1- \beta } dx $

For the specific case where $ \beta=\frac{1}{2} $, we call $ \varepsilon_{\frac{1}{2}} $ as Bhattacharyya bound.

The smallest of such bound in eq. ...

$ S := \min_{\beta \in \left[ 0,1 \right] } \big( \varepsilon _{\beta}\big) $

is also sometimes called the Chernoff Bound. This can be used as a error bound since the Bayes error lies somewhere in between 0 and $ \min\big( \varepsilon _{\beta}\big) $.

The Chernoff bound $ \varepsilon _{\beta} $ is the probability of error as a function of $ \beta $. It is usually used for two-category cases and if to be used for multi-category cases, the error bound can be split into several two-category cases and add up all to form the final error bound.


3. Chernoff Bound for Normally Distributed Data

3.1

3.2

Summary


Reference

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett