Line 3: Line 3:
 
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
 
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
  
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>
+
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>  
  
 
<font size="4">Question 1: Probability and Random Processes </font>  
 
<font size="4">Question 1: Probability and Random Processes </font>  
Line 21: Line 21:
 
Problem statement: Let <span class="texhtml">''X''</span> be a continuous or discrete random variable with mean <span class="texhtml">μ</span> and variance <span class="texhtml">σ<sup>2</sup></span>. Then, <math>\forall \varepsilon >0</math>, we have<br> <math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>  
 
Problem statement: Let <span class="texhtml">''X''</span> be a continuous or discrete random variable with mean <span class="texhtml">μ</span> and variance <span class="texhtml">σ<sup>2</sup></span>. Then, <math>\forall \varepsilon >0</math>, we have<br> <math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>  
  
===== <math>\color{blue}\text{Solution 1:}</math><br> =====
+
===== <math>\color{blue}\text{Solution 1:}</math><br> =====
 +
 
 +
*Continuous case:<br>
 +
 
 +
Consider two functions <span class="texhtml">''g''<sub>''1''</sub>(''x'')</span> and <span class="texhtml">''g''<sub>''2''</sub>(''x'')</span>
 +
 
 +
<span class="texhtml">''g''<sub>''1''</sub>(''x'')</span> <math>=</math> <span class="texhtml">''1''<sub>''R''</sub>(''x'')</span><br>
 +
where, <math>R = \{x: \mid x-\mu\mid \geq \varepsilon\}</math>
 +
 
 +
 
 +
<math>g_{1}(x)= 1_{\{x: \mid x-\mu\mid \geq \varepsilon\}}(x)</math>
 +
 
 +
<math>g_{2}(x)=\frac{(x-\mu)^2}{\varepsilon^2}</math>
  
Statement: If '''X''' is random variable (continuous or discrete) with mean <math>\mu</math> and variance <math>\sigma^2</math>, then
 
  
P{|'''X'''-<math>\mu \geq \varepsilon</math>}
 
  
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
Line 32: Line 42:
  
 
Let <span class="texhtml">''p''<sub>''X''</sub>(''x'')</span> be the pmf of X. The probability that <span class="texhtml">''X''</span> differs from <span class="texhtml">μ</span> by at least <math>\varepsilon </math> is <br> <math> P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x)</math><br> Based on the definition of the variance, we have<br> <span class="texhtml">
 
Let <span class="texhtml">''p''<sub>''X''</sub>(''x'')</span> be the pmf of X. The probability that <span class="texhtml">''X''</span> differs from <span class="texhtml">μ</span> by at least <math>\varepsilon </math> is <br> <math> P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x)</math><br> Based on the definition of the variance, we have<br> <span class="texhtml">
</span>
+
</span>  
  
 
{|
 
{|
 
|- style="text-align: center;"
 
|- style="text-align: center;"
 
| σ<sup>2</sup> =  
 
| σ<sup>2</sup> =  
| <span style="font-size: x-large; font-family: serif;">∑</span>
+
| <span style="font-size: x-large; font-family: serif;">∑</span>  
 
| (''x'' − μ)<sup>2</sup>''p''<sub>''X''</sub>(''x'')
 
| (''x'' − μ)<sup>2</sup>''p''<sub>''X''</sub>(''x'')
 
|- style="text-align: center; vertical-align: top;"
 
|- style="text-align: center; vertical-align: top;"
 
|  
 
|  
| ''x''
+
| ''x''  
 
|  
 
|  
 
|}
 
|}

Revision as of 12:09, 26 January 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 2

Problem statement: Let X be a continuous or discrete random variable with mean μ and variance σ2. Then, $ \forall \varepsilon >0 $, we have
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

$ \color{blue}\text{Solution 1:} $
  • Continuous case:

Consider two functions g1(x) and g2(x)

g1(x) $ = $ 1R(x)
where, $ R = \{x: \mid x-\mu\mid \geq \varepsilon\} $


$ g_{1}(x)= 1_{\{x: \mid x-\mu\mid \geq \varepsilon\}}(x) $

$ g_{2}(x)=\frac{(x-\mu)^2}{\varepsilon^2} $


$ \color{blue}\text{Solution 2:} $
  • Discrete Case:

Let pX(x) be the pmf of X. The probability that X differs from μ by at least $ \varepsilon $ is
$ P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x) $
Based on the definition of the variance, we have

σ2 = (x − μ)2pX(x)
x


Let a set $ A= \{ x|\,|x-\mu| \geq \varepsilon \} $. We have
$ \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)= \sum_{x \in A}(x-\mu)^2 p_{X}(x)+\sum_{x \notin A}(x-\mu)^2 p_{X}(x) $
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}(x-\mu)^2 p_{X}(x) $
Since, in set A, we have $ |x-\mu| \geq \varepsilon $, we have
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}\varepsilon^2 p_{X}(x)= \varepsilon^2 \sum_{x \in A}p_{X}(x)=\varepsilon^2 P(x \in A) =\varepsilon^2 P(|X-\mu| \geq \varepsilon) $
That is
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

  • Continuous Case:

Let fX(x) be the pdf of X.
$ \sigma^2=\int_{-\infty}^{\infty}(x-\mu)^2f_{X}(x) \,dx \geq \int_{-\infty}^{\mu-\varepsilon}(x-\mu)^2f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty}(x-\mu)^2f_{X}(x) \,dx $
The last inequality holds since we integrate a positive function. Since $ x \leq \mu-\varepsilon $ or $ x \geq \mu+\varepsilon $
$ \Rightarrow |x-\mu| \geq \varepsilon \Rightarrow (x-\mu)^2 \geq \varepsilon^2 $
Based on the above equation, we have
$ \sigma^2 \geq \int_{-\infty}^{\mu-\varepsilon}\varepsilon^2 f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} \varepsilon^2 f_{X}(x) \,dx $
$ = \varepsilon^2 \left( \int_{-\infty}^{\mu-\varepsilon}f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} f_{X}(x) \,dx \right) = \varepsilon^2 P \bigg( X \leq (\mu-\varepsilon)\, \text{or} \, X \geq (\mu+\varepsilon) \bigg) = \varepsilon^2 P(|X-\mu| \geq \varepsilon) $
$ \Rightarrow P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman