Line 2: | Line 2: | ||
− | + | We will start with the definition of a matrix. An <math>m\times n</math> ''matrix'' <math>A</math> over the reals, is an arrangement of real numbers in a table with <math>m</math> rows and <math>n</math> columns. | |
+ | |||
+ | Let us consider for example the <math>2\times 3</math>\\ | ||
+ | <math>A=\begin{bmatrix}2&4e^{2}&0\\5&-1&\sqrt{\pi}\\\end{bmatrix} </math>. | ||
[[Category:MA 511Spring2013De la Mora]] | [[Category:MA 511Spring2013De la Mora]] |
Revision as of 12:09, 12 December 2013
Rhea Section for MA 511 Professor De la Mora, Spring 2013
We will start with the definition of a matrix. An $ m\times n $ matrix $ A $ over the reals, is an arrangement of real numbers in a table with $ m $ rows and $ n $ columns.
Let us consider for example the $ 2\times 3 $\\
$ A=\begin{bmatrix}2&4e^{2}&0\\5&-1&\sqrt{\pi}\\\end{bmatrix} $.