(2 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:discrete-space Fourier transform]]
 
[[Category:discrete-space Fourier transform]]
= [[:Category:Problem_solving|Practice Problem]] on Discrete-space Fourier transform computation =
+
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Discrete-space Fourier transform computation  
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the discrete-space Fourier transform of the following signal:
 
Compute the discrete-space Fourier transform of the following signal:
  
Line 25: Line 34:
  
 
--[[User:Xiao1|Xiao1]] 23:03, 19 November 2011 (UTC)
 
--[[User:Xiao1|Xiao1]] 23:03, 19 November 2011 (UTC)
 +
 +
:<span style="color:green">Instructor's comment: This approach is correct, but it may not be obvious to other students reading the solution how you obtain the last expression from the previous line. Can somebody else clarify? -pm </span>
 +
 +
 +
<math>
 +
\begin{align}
 +
F [u,v] &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)}  \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\
 +
&= \sum_{m=-\infty}^{\infty} \left( \delta[n+1] + delta[n] + delta[n-1]  \right) e^{-j(mu)}  \sum_{n=-\infty}^{\infty} \left(  \delta[n] + delta[n-1] + delta[n-2] \right)e^{-j(nv)}\\
 +
&_{by. looking. up. in. table. or. compute. shifted. delta. function's. DFT, on. can. get}\\
 +
&= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\
 +
\end{align}</math>
 +
 +
--[[User:Xiao1|Xiao1]] 13:12, 25 November 2011 (UTC)
 +
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 11:58, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Discrete-space Fourier transform computation


Question

Compute the discrete-space Fourier transform of the following signal:

$ f[m,n]= \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m,n]e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right) \left( u[m+1]-u[m-2] \right)e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $

--Xiao1 23:03, 19 November 2011 (UTC)

Instructor's comment: This approach is correct, but it may not be obvious to other students reading the solution how you obtain the last expression from the previous line. Can somebody else clarify? -pm


$ \begin{align} F [u,v] &= \sum_{m=-\infty}^{\infty} \left( u[m+1]-u[m-2] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( u[n]-u[n-3] \right)e^{-j(nv)}\\ &= \sum_{m=-\infty}^{\infty} \left( \delta[n+1] + delta[n] + delta[n-1] \right) e^{-j(mu)} \sum_{n=-\infty}^{\infty} \left( \delta[n] + delta[n-1] + delta[n-2] \right)e^{-j(nv)}\\ &_{by. looking. up. in. table. or. compute. shifted. delta. function's. DFT, on. can. get}\\ &= (e^{jmu} + 1 + e^{-jmu})\cdot(1 + e^{-jnv} + e^{-2jnv})\\ \end{align} $

--Xiao1 13:12, 25 November 2011 (UTC)

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva