(4 intermediate revisions by 3 users not shown)
Line 5: Line 5:
 
[[Category:2D rect]]
 
[[Category:2D rect]]
  
= Continuous-space Fourier transform of the 2D "rect" function ([[:Category:Problem_solving|Practice Problem]])=
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Continuous-space Fourier transform of a 2D "rect" function
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the Continuous-space Fourier transform (CSFT) of  
 
Compute the Continuous-space Fourier transform (CSFT) of  
  
Line 17: Line 25:
 
Justify your answer.
 
Justify your answer.
 
----  
 
----  
----
 
 
==Share your answers below==
 
==Share your answers below==
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
<math> x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy
 +
</math>
 +
 
 +
<math> = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}]</math>
 +
:<span style="color:green">Instructor's comment: </span>
 +
 
 +
::<span style="color:green"> a) You could perhaps simplify your answer a bit. (It's actually a sinc!). </span>
 +
 
 +
::<span style="color:green"> b) The parenthesis around the u and v in the  denominator of the answer are a bit confusing, but you would not lose any point for that of course.  </span>
 +
 
 +
::<span style="color:green"> c) You should add a few extra steps before writing the answer. If you do the steps in your head, there is a high likelihood of making a mistake. If you make a mistake in the answer and your wrote no intermediate steps, then you would get very little partial credit.  </span>
 +
 
 +
::<span style="color:green"> d) Actually, these is a slight problem with your answer at u=0 or v=0. So technically, you should split your solution into three cases: "u=0", "v=0", and "neither u nor v equal to zero". </span>
 +
 
 +
:::<span style="color:green"> pm </span>
 +
----
 
===Answer 2===
 
===Answer 2===
Write it here
+
 
 +
<math> F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy = \int_{-\frac{1}{2}}^{\frac{1}{2}}\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2j \pi (ux +vy) }dxdy</math>
 +
<math> = \frac{(e^{j \pi u}-e^{-j \pi u} )(e^{j \pi v}-e^{-j \pi v})}{(2j\pi u)(2j\pi v)}</math>
 +
 
 +
<math> = \frac{sin(u)sin(v)}{(\pi u)(\pi v)} = sinc(u)sinc(v)= sinc(u,v)</math>
 +
--[[User:Xiao1|Xiao1]] 23:26, 12 November 2011 (UTC)
 +
----
 +
 
 +
:<span style="color:green">Instructor's comment: </span>
 +
 
 +
::<span style="color:green"> a) This is a good amount of intermediate steps: not too much, not too little, altough adding an extra step to do the actual integration would not hurt. </span>
 +
 
 +
::<span style="color:green"> b) Technically, your reasoning is not valid at u=0 or v=0 (because you would be dividing by zero).  </span>
 +
 
 +
:::<span style="color:green"> pm </span>
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 11:57, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Continuous-space Fourier transform of a 2D "rect" function


Question

Compute the Continuous-space Fourier transform (CSFT) of

$ f(x,y)= \left\{ \begin{array}{ll} 1, & \text{ if } |x|<\frac{1}{2} \text{ and } |y|<\frac{1}{2}\\ 0, & \text{ else}. \end{array} \right. $

Justify your answer.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy $

$ = \frac{1}{2j\pi(u)}\frac{1}{2j\pi(v)}[-e^{-j \pi (u)} + e^{j \pi (u)}][-e^{-j \pi (v)} + e^{j \pi (v)}] $

Instructor's comment:
a) You could perhaps simplify your answer a bit. (It's actually a sinc!).
b) The parenthesis around the u and v in the denominator of the answer are a bit confusing, but you would not lose any point for that of course.
c) You should add a few extra steps before writing the answer. If you do the steps in your head, there is a high likelihood of making a mistake. If you make a mistake in the answer and your wrote no intermediate steps, then you would get very little partial credit.
d) Actually, these is a slight problem with your answer at u=0 or v=0. So technically, you should split your solution into three cases: "u=0", "v=0", and "neither u nor v equal to zero".
pm

Answer 2

$ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-2j \pi (ux +vy) }dxdy = \int_{-\frac{1}{2}}^{\frac{1}{2}}\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2j \pi (ux +vy) }dxdy $ $ = \frac{(e^{j \pi u}-e^{-j \pi u} )(e^{j \pi v}-e^{-j \pi v})}{(2j\pi u)(2j\pi v)} $

$ = \frac{sin(u)sin(v)}{(\pi u)(\pi v)} = sinc(u)sinc(v)= sinc(u,v) $ --Xiao1 23:26, 12 November 2011 (UTC)


Instructor's comment:
a) This is a good amount of intermediate steps: not too much, not too little, altough adding an extra step to do the actual integration would not hurt.
b) Technically, your reasoning is not valid at u=0 or v=0 (because you would be dividing by zero).
pm

Answer 3

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn