(12 intermediate revisions by 5 users not shown) | |||
Line 5: | Line 5: | ||
[[Category:z-transform]] | [[Category:z-transform]] | ||
− | = [[ | + | <center><font size= 4> |
+ | '''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]''' | ||
+ | </font size> | ||
+ | |||
+ | Topic: Computing a z-transform | ||
+ | |||
+ | </center> | ||
+ | ---- | ||
+ | ==Question== | ||
Compute the z-transform (including the ROC) of the following DT signal: | Compute the z-transform (including the ROC) of the following DT signal: | ||
Line 39: | Line 47: | ||
<math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3 | <math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3 | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
=== Answer 2=== | === Answer 2=== | ||
Line 58: | Line 68: | ||
<math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math> | <math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: The Fourier Transform calculated is wrong </span> | ||
===Answer 3=== | ===Answer 3=== | ||
Line 71: | Line 83: | ||
<math>X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} </math> if |z| < 3 | <math>X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} </math> if |z| < 3 | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
===Answer 4=== | ===Answer 4=== | ||
Line 99: | Line 113: | ||
for all, this signal can't have DTFT. | for all, this signal can't have DTFT. | ||
+ | :<span style="color:blue"> Grader's comment: You copied the question wrongly </span> | ||
===Answer 5=== | ===Answer 5=== | ||
Line 113: | Line 128: | ||
<math>X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k</math> | <math>X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k</math> | ||
− | <math>X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k}</math> | + | <math>X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k}</math> |
− | < | + | For |z| < 3, we have, by geometric series, that: |
− | + | <math>X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) </math> | |
− | + | By simplification, | |
− | X(z) = | + | <math>X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) </math>, ROC |z| < 3. |
+ | |||
+ | Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal. | ||
+ | Therefore, to find the signal`s Fourier representation, we just need to replace z be <math>e^{j w}</math> | ||
So, | So, | ||
− | <math>X(z) = (\frac{3}{3-z}) </math> | + | <math>X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) </math> |
+ | |||
+ | :<span style="color:blue"> Grader's comment: Correct Answer </span> | ||
+ | |||
+ | ---- | ||
+ | Answer 6 | ||
+ | |||
+ | <math>x[n] = 3^n u[-n+3]</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>= \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n}</math> | ||
+ | |||
+ | let k = -n+3 | ||
+ | => n = -k+3 | ||
+ | |||
+ | <math>X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3}</math> | ||
+ | |||
+ | <math>= \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k</math> | ||
+ | |||
+ | <math>= \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1</math> | ||
+ | |||
+ | <math>X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3</math> | ||
+ | |||
+ | diverges , else | ||
+ | |||
+ | <math>F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}}</math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Replace Z by e^jw </span> | ||
+ | |||
+ | ----answer 7 | ||
+ | |||
+ | Xiang Zhang | ||
+ | |||
+ | In order to get Z-transform, we can first apply the basic transformation equation. | ||
+ | |||
+ | <math> X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} </math> | ||
+ | |||
+ | Substitute in x[n], we can get that, | ||
+ | |||
+ | <math> X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} </math> | ||
+ | |||
+ | let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier! | ||
+ | |||
+ | <math> X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} </math> | ||
+ | |||
+ | |||
+ | Now we can use u[k] to change the lower boundary to | ||
+ | |||
+ | <math> X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} </math> | ||
+ | |||
+ | We can take out some terms from Z. | ||
+ | |||
+ | <math> X_(z) = \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} </math> | ||
+ | |||
+ | Now we can apply geometric series formula into the transform by letting q = z/3 | ||
+ | |||
+ | <math> \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for |q| < 1 </math> | ||
+ | |||
+ | <math> X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3</math> | ||
+ | |||
+ | Hence, the final x(z) is | ||
+ | |||
+ | |||
+ | <math> | ||
+ | X(z) = \left\{ | ||
+ | \begin{array}{l l} | ||
+ | \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad |z| < 3\\ | ||
+ | diverges & \quad \text{else} | ||
+ | \end{array} \right. | ||
+ | </math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
---- | ---- | ||
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] |
Latest revision as of 11:53, 26 November 2013
Practice Question on "Digital Signal Processing"
Topic: Computing a z-transform
Contents
Question
Compute the z-transform (including the ROC) of the following DT signal:
$ x[n]=3^n u[-n+3] \ $
Then use your answer to obtain the Fourier transform of the signal. (Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
x[n] = 3nu[-n + 3]
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k = -n+3, n = -k+3
$ X(z) = \sum_{k=0}^{+\infty} (\frac{3}{z})^{-k+3} $
$ X(z) = (\frac{3}{z})^{3} \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = (\frac{27}{z^3}) \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
By geometric series formula,
$ X(z) = (\frac{27}{z^3}) (\frac{1}{1-(\frac{z}{3})}) $ ,for |z| < 3
X(z) = diverges, else
So,
$ X(z) = (\frac{3}{3-z}) $ with ROC, |z| < 3
- Grader's comment: Obtain the Fourier transform of the signal
Answer 2
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k=-n+3, n=3-k, then
$ X(z) = \sum_{k=-\infty}^{+\infty} (3)^{n-k}u[k](z)^{-3+k} $
$ X(z) = (\frac{3}{z})^{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = \left\{ \begin{array}{l l} (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} &, if \quad |z| < 3\\ \text{diverges} &, \quad \text{otherwise} \end{array} \right. $
$ \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} $
- Grader's comment: The Fourier Transform calculated is wrong
Answer 3
Kyungjun Kim
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let l=-n+3, n=3-l, then
$ X(z) = \sum_{l=-\infty}^{+\infty} (3)^{n-l}u[k]z^{-3+l} $
$ X(z) = (\frac{3}{z})^{3}\sum_{l=0}^{+\infty} (\frac{z}{3})^{l} $
$ X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} $ if |z| < 3
- Grader's comment: Obtain the Fourier transform of the signal
Answer 4
$ X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $
$ X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. $
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 $
or diverges else.
for the DTFT for this signal,
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, so it is impossible to have e^{j\omega}, because ROC is bigger at 3 $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: $
$ \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} $
for all, this signal can't have DTFT.
- Grader's comment: You copied the question wrongly
Answer 5
x[n] = 3nu[-n + 3]
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
$ X(z) = \sum_{-\infty}^{3} 3^n z^{-n} $
Let k = -n,
$ X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k $
$ X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k} $
For |z| < 3, we have, by geometric series, that:
$ X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) $
By simplification,
$ X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) $, ROC |z| < 3.
Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal. Therefore, to find the signal`s Fourier representation, we just need to replace z be $ e^{j w} $
So,
$ X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) $
- Grader's comment: Correct Answer
Answer 6
$ x[n] = 3^n u[-n+3] $
$ X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} $
$ = \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n} $
let k = -n+3 => n = -k+3
$ X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3} $
$ = \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k $
$ = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1 $
$ X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3 $
diverges , else
$ F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}} $
- Grader's comment: Replace Z by e^jw
answer 7
Xiang Zhang
In order to get Z-transform, we can first apply the basic transformation equation.
$ X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} $
Substitute in x[n], we can get that,
$ X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} $
let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier!
$ X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} $
Now we can use u[k] to change the lower boundary to
$ X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} $
We can take out some terms from Z.
$ X_(z) = \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} $
Now we can apply geometric series formula into the transform by letting q = z/3
$ \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for |q| < 1 $
$ X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3 $
Hence, the final x(z) is
$ X(z) = \left\{ \begin{array}{l l} \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad |z| < 3\\ diverges & \quad \text{else} \end{array} \right. $
- Grader's comment: Obtain the Fourier transform of the signal