(New page: Category:ECE301 Category:ECE438 Category:ECE438Fall2013Boutin Category:problem solving Category:z-transform = Practice Problem on Z-trans...) |
|||
(36 intermediate revisions by 10 users not shown) | |||
Line 5: | Line 5: | ||
[[Category:z-transform]] | [[Category:z-transform]] | ||
− | = [[ | + | <center><font size= 4> |
− | Compute | + | '''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]''' |
+ | </font size> | ||
+ | |||
+ | Topic: Computing a z-transform | ||
+ | |||
+ | </center> | ||
+ | ---- | ||
+ | ==Question== | ||
+ | Compute the z-transform (including the ROC) of the following DT signal: | ||
<math>x[n]=3^n u[-n+3] \ </math> | <math>x[n]=3^n u[-n+3] \ </math> | ||
− | (Write enough intermediate steps to fully justify your answer.) | + | Then use your answer to obtain the Fourier transform of the signal. (Write enough intermediate steps to fully justify your answer.) |
---- | ---- | ||
==Share your answers below== | ==Share your answers below== | ||
Line 16: | Line 24: | ||
---- | ---- | ||
===Answer 1=== | ===Answer 1=== | ||
− | + | <span class="texhtml">''x''[''n''] = 3<sup>''n''</sup>''u''[''-n'' + 3]</span> | |
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n}</math> | ||
+ | |||
+ | Let k = -n+3, n = -k+3 | ||
+ | |||
+ | <math>X(z) = \sum_{k=0}^{+\infty} (\frac{3}{z})^{-k+3}</math> | ||
+ | |||
+ | <math>X(z) = (\frac{3}{z})^{3} \sum_{k=0}^{+\infty} (\frac{z}{3})^{k}</math> | ||
+ | |||
+ | <math>X(z) = (\frac{27}{z^3}) \sum_{k=0}^{+\infty} (\frac{z}{3})^{k}</math> | ||
+ | |||
+ | By geometric series formula, | ||
+ | |||
+ | <math>X(z) = (\frac{27}{z^3}) (\frac{1}{1-(\frac{z}{3})}) </math> ,for |z| < 3 | ||
+ | |||
+ | X(z) = diverges, else | ||
+ | |||
+ | So, | ||
+ | |||
+ | <math>X(z) = (\frac{3}{3-z}) </math> with ROC, |z| < 3 | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
+ | |||
=== Answer 2=== | === Answer 2=== | ||
− | + | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n}</math> | |
+ | |||
+ | Let k=-n+3, n=3-k, then | ||
+ | |||
+ | <math>X(z) = \sum_{k=-\infty}^{+\infty} (3)^{n-k}u[k](z)^{-3+k}</math> | ||
+ | |||
+ | <math>X(z) = (\frac{3}{z})^{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^{k}</math> | ||
+ | |||
+ | <math> | ||
+ | X(z) = \left\{ | ||
+ | \begin{array}{l l} | ||
+ | (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} &, if \quad |z| < 3\\ | ||
+ | \text{diverges} &, \quad \text{otherwise} | ||
+ | \end{array} \right. | ||
+ | </math> | ||
+ | |||
+ | <math> \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} </math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: The Fourier Transform calculated is wrong </span> | ||
+ | |||
===Answer 3=== | ===Answer 3=== | ||
− | + | Kyungjun Kim | |
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n}</math> | ||
+ | |||
+ | Let l=-n+3, n=3-l, then | ||
+ | |||
+ | <math>X(z) = \sum_{l=-\infty}^{+\infty} (3)^{n-l}u[k]z^{-3+l}</math> | ||
+ | |||
+ | <math>X(z) = (\frac{3}{z})^{3}\sum_{l=0}^{+\infty} (\frac{z}{3})^{l}</math> | ||
+ | |||
+ | <math>X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} </math> if |z| < 3 | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
+ | |||
===Answer 4=== | ===Answer 4=== | ||
− | + | ||
+ | <math> X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} </math> | ||
+ | |||
+ | <math> for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. </math> | ||
+ | |||
+ | <math> for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 </math> | ||
+ | |||
+ | or diverges else. | ||
+ | |||
+ | for the DTFT for this signal, | ||
+ | |||
+ | <math> for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, | ||
+ | so it is impossible to have e^{j\omega}, because ROC is bigger at 3 </math> | ||
+ | |||
+ | <math> for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: </math> | ||
+ | |||
+ | <math> \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} </math> | ||
+ | |||
+ | for all, this signal can't have DTFT. | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: You copied the question wrongly </span> | ||
+ | |||
+ | ===Answer 5=== | ||
+ | <span class="texhtml">''x''[''n''] = 3<sup>''n''</sup>''u''[''-n'' + 3]</span> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{-\infty}^{3} 3^n z^{-n}</math> | ||
+ | |||
+ | Let k = -n, | ||
+ | |||
+ | <math>X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k</math> | ||
+ | |||
+ | <math>X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k}</math> | ||
+ | |||
+ | For |z| < 3, we have, by geometric series, that: | ||
+ | |||
+ | <math>X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) </math> | ||
+ | |||
+ | By simplification, | ||
+ | |||
+ | <math>X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) </math>, ROC |z| < 3. | ||
+ | |||
+ | Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal. | ||
+ | Therefore, to find the signal`s Fourier representation, we just need to replace z be <math>e^{j w}</math> | ||
+ | |||
+ | So, | ||
+ | |||
+ | <math>X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) </math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Correct Answer </span> | ||
+ | |||
+ | ---- | ||
+ | Answer 6 | ||
+ | |||
+ | <math>x[n] = 3^n u[-n+3]</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>= \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n}</math> | ||
+ | |||
+ | let k = -n+3 | ||
+ | => n = -k+3 | ||
+ | |||
+ | <math>X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3}</math> | ||
+ | |||
+ | <math>= \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k</math> | ||
+ | |||
+ | <math>= \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1</math> | ||
+ | |||
+ | <math>X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3</math> | ||
+ | |||
+ | diverges , else | ||
+ | |||
+ | <math>F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}}</math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Replace Z by e^jw </span> | ||
+ | |||
+ | ----answer 7 | ||
+ | |||
+ | Xiang Zhang | ||
+ | |||
+ | In order to get Z-transform, we can first apply the basic transformation equation. | ||
+ | |||
+ | <math> X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} </math> | ||
+ | |||
+ | Substitute in x[n], we can get that, | ||
+ | |||
+ | <math> X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} </math> | ||
+ | |||
+ | let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier! | ||
+ | |||
+ | <math> X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} </math> | ||
+ | |||
+ | |||
+ | Now we can use u[k] to change the lower boundary to | ||
+ | |||
+ | <math> X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} </math> | ||
+ | |||
+ | We can take out some terms from Z. | ||
+ | |||
+ | <math> X_(z) = \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} </math> | ||
+ | |||
+ | Now we can apply geometric series formula into the transform by letting q = z/3 | ||
+ | |||
+ | <math> \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for |q| < 1 </math> | ||
+ | |||
+ | <math> X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3</math> | ||
+ | |||
+ | Hence, the final x(z) is | ||
+ | |||
+ | |||
+ | <math> | ||
+ | X(z) = \left\{ | ||
+ | \begin{array}{l l} | ||
+ | \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad |z| < 3\\ | ||
+ | diverges & \quad \text{else} | ||
+ | \end{array} \right. | ||
+ | </math> | ||
+ | |||
+ | :<span style="color:blue"> Grader's comment: Obtain the Fourier transform of the signal </span> | ||
+ | |||
+ | |||
---- | ---- | ||
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] |
Latest revision as of 11:53, 26 November 2013
Practice Question on "Digital Signal Processing"
Topic: Computing a z-transform
Contents
Question
Compute the z-transform (including the ROC) of the following DT signal:
$ x[n]=3^n u[-n+3] \ $
Then use your answer to obtain the Fourier transform of the signal. (Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
x[n] = 3nu[-n + 3]
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k = -n+3, n = -k+3
$ X(z) = \sum_{k=0}^{+\infty} (\frac{3}{z})^{-k+3} $
$ X(z) = (\frac{3}{z})^{3} \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = (\frac{27}{z^3}) \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
By geometric series formula,
$ X(z) = (\frac{27}{z^3}) (\frac{1}{1-(\frac{z}{3})}) $ ,for |z| < 3
X(z) = diverges, else
So,
$ X(z) = (\frac{3}{3-z}) $ with ROC, |z| < 3
- Grader's comment: Obtain the Fourier transform of the signal
Answer 2
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k=-n+3, n=3-k, then
$ X(z) = \sum_{k=-\infty}^{+\infty} (3)^{n-k}u[k](z)^{-3+k} $
$ X(z) = (\frac{3}{z})^{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = \left\{ \begin{array}{l l} (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} &, if \quad |z| < 3\\ \text{diverges} &, \quad \text{otherwise} \end{array} \right. $
$ \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} $
- Grader's comment: The Fourier Transform calculated is wrong
Answer 3
Kyungjun Kim
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let l=-n+3, n=3-l, then
$ X(z) = \sum_{l=-\infty}^{+\infty} (3)^{n-l}u[k]z^{-3+l} $
$ X(z) = (\frac{3}{z})^{3}\sum_{l=0}^{+\infty} (\frac{z}{3})^{l} $
$ X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} $ if |z| < 3
- Grader's comment: Obtain the Fourier transform of the signal
Answer 4
$ X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $
$ X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. $
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 $
or diverges else.
for the DTFT for this signal,
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, so it is impossible to have e^{j\omega}, because ROC is bigger at 3 $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: $
$ \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} $
for all, this signal can't have DTFT.
- Grader's comment: You copied the question wrongly
Answer 5
x[n] = 3nu[-n + 3]
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
$ X(z) = \sum_{-\infty}^{3} 3^n z^{-n} $
Let k = -n,
$ X(z) = \sum_{k=-3}^{+\infty} 3^{-k} z^k $
$ X(z) = \sum_{k=-3}^{+\infty} (\frac{z}{3})^{k} $
For |z| < 3, we have, by geometric series, that:
$ X(z) = (\frac{27 z^{-3}}{1+(\frac{z}{3})}) $
By simplification,
$ X(z) = (\frac{-81 z^{-4}}{1-3 z^{-1}}) $, ROC |z| < 3.
Since the ROC contains the unit circle, there exists a Fourier transform representation for the signal. Therefore, to find the signal`s Fourier representation, we just need to replace z be $ e^{j w} $
So,
$ X(\omega) = -(\frac{81 e^{-j 4 w}}{1-3 e^{-j w}}) $
- Grader's comment: Correct Answer
Answer 6
$ x[n] = 3^n u[-n+3] $
$ X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n} $
$ = \sum_{n=-\infty}^{\infty} 3^n u[-n+3] z^{-n} $
let k = -n+3 => n = -k+3
$ X(z) = \sum_{k=0}^{\infty} 3^{-k+3} z^{k-3} $
$ = \frac{3^3}{z^3} \sum_{k=0}^{\infty} {\frac{z}{3}}^k $
$ = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left |\frac{z}{3} \right | < 1 $
$ X(z) = \frac{3^3}{z^3} \frac{1}{1-\frac{z}{3}}, \left | z \right | < 3 $
diverges , else
$ F{{x[n]r^{-n}}} = X(3e^{jw}) = X(\omega) = \frac{e^{-j \omega 3}}{1-e^{jw}} $
- Grader's comment: Replace Z by e^jw
answer 7
Xiang Zhang
In order to get Z-transform, we can first apply the basic transformation equation.
$ X_(z) = \sum_{n = -\infty}^{ \infty} x[n] z^{- n} $
Substitute in x[n], we can get that,
$ X_(z) = \sum_{n = -\infty}^{ \infty} 3^n u[-n+3] z^{- n} $
let's use variable substitution by k = -n+3 hence n = 3-k. It can make our life beautiful and easier!
$ X_(z) = \sum_{n = +\infty}^{- \infty} 3^{3-k} u[k] z^{k - 3} $
Now we can use u[k] to change the lower boundary to
$ X_(z) = \sum_{n = 0 }^{ \infty} 3^{3-k} z^{k-3} $
We can take out some terms from Z.
$ X_(z) = \frac{27}{ z^3} \sum_{n = 0 }^{ \infty} {(\frac{z}{3})}^{k} $
Now we can apply geometric series formula into the transform by letting q = z/3
$ \frac{1}{1-q} = \sum_{ n = 0 }^{+ \infty} q^k for |q| < 1 $
$ X_(z) = \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) for |z| < 3 $
Hence, the final x(z) is
$ X(z) = \left\{ \begin{array}{l l} \frac{27}{ z^3} (\frac{1}{1-\frac{z}{3}}) & \quad when \quad |z| < 3\\ diverges & \quad \text{else} \end{array} \right. $
- Grader's comment: Obtain the Fourier transform of the signal