(One intermediate revision by one other user not shown)
Line 1: Line 1:
= [[:Category:Problem solving|Practice Problem]] on Z-transform computation  =
+
[[Category:problem solving]]
 +
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing a z-transform
 +
 
 +
</center>
 +
----
 +
==Question==
  
 
Compute the compute the z-transform (including the ROC) of the following DT signal:  
 
Compute the compute the z-transform (including the ROC) of the following DT signal:  
Line 47: Line 57:
 
<br>  
 
<br>  
  
:<span style="color:red"> TA's comment: When n=0,x[n]=0. So the constant term is 0. </span>
+
:<span style="color:red"> TA's comment: When n=0,x[n]=0. So the constant term is 0. ROC is everywhere except z=infinity</span>
  
 
=== Answer 3  ===
 
=== Answer 3  ===
Line 68: Line 78:
 
</span>  
 
</span>  
  
:<span style="color:red"> TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= ''n''<sup>2</sup>(δ(''n'' + 3) + δ(''n'' + 2) + δ(''n'' + 1) + δ(''n''))</span>
+
:<span style="color:red"> TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= ''n''<sup>2</sup>(δ(''n'' + 3) + δ(''n'' + 2) + δ(''n'' + 1) + δ(''n'')). ROC is everywhere except z=infinity</span>
  
 
=== Answer 7  ===
 
=== Answer 7  ===
Line 83: Line 93:
  
 
       = 9z^{3} + 4z^{2} + z
 
       = 9z^{3} + 4z^{2} + z
 +
 +
 +
:<span style="color:red"> TA's comment: ROC is everywhere except z=infinity.</span>
  
 
=== Answer 8  ===
 
=== Answer 8  ===
Line 105: Line 118:
 
<br>  
 
<br>  
  
:<span style="color:red"> TA's comment: In your second step, the summation should be from -3 to 0. But since </span>
+
:<span style="color:red"> TA's comment: In your second step, the summation should be from -3 to 0 . There should be no constant termsince x[0]=0. ROC is everywhere except z=infinity </span>
  
 
=== Answer 10  ===
 
=== Answer 10  ===
Line 118: Line 131:
  
 
<br>  
 
<br>  
 +
 +
 +
:<span style="color:red"> TA's comment: ROC is everywhere except z=infinity.</span>
  
 
=== Answer 11  ===
 
=== Answer 11  ===

Latest revision as of 11:52, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing a z-transform


Question

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

Andrei Henrique Patriota Campos x[n] = n2(u[n + 2] − u[n − 1]).

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

= 9z3 + 4z2 + z

= z3(9 + 4z − 1 + z − 2)

= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.

TA's comment: z can not be $ \infty $ for the z transform to converge

Answer 2

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane


TA's comment: When n=0,x[n]=0. So the constant term is 0. ROC is everywhere except z=infinity

Answer 3

Write it here.

Answer 4

Write it here.

Answer 5

Tony Mlinarich

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

X(z) = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n) + δ(n − 1))zn

X(z) = 9z3 + 4z2 + z + 1/z<\span>

TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n)). ROC is everywhere except z=infinity

Answer 7

Yixiang Liu

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n} $

This expression equals to zero except n = -3, -2, -1

so X(z) = x[ − 3]z3 + x[ − 2]z2 + x[ − 1]z1

      = 9z^{3} + 4z^{2} + z


TA's comment: ROC is everywhere except z=infinity.

Answer 8

Xi Wang

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

= X(z) = (9z + 3 + 4z + 2 + z). The range of the value of z is from negative infinity to positive infinity

TA's comment: Show your derivation

Answer 9

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{+1} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z +2 + z + 1 for all z in complex plane


TA's comment: In your second step, the summation should be from -3 to 0 . There should be no constant termsince x[0]=0. ROC is everywhere except z=infinity

Answer 10

Cary Wood

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-3}^{0} x[n] z^{-n} $

= X(z) = 9z + 3 + 4z + 2 + z, for all z in complex plane



TA's comment: ROC is everywhere except z=infinity.

Answer 11

Shiyu Wang

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2   (-3=< n < 1)

$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $ 

x(z)=9z3+4z2+z, for all z in complex plane except z=infinity

TA's comment: Simple and straightforward.

Answer 12

Matt Miller

x[n] = n2(u[n+3]-u[n-1])

x[n] = n2u[n+3] - n2u[n-1]

x[n] = n2|0-3

$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $ 

X(z) = (-3)2z3 + (-2)2z2 + (-1)2z1 + (0)2z0

X(z) = 9z3 + 4z2 + z

lim z->inf X(1/2) = 0, lim z->0 X(1/2) = inf --> valid for all Z in complex plane.


TA's comment: In the third step, it's better write it as a summation.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett