(40 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
− | + | [[Category:problem solving]] | |
+ | |||
+ | <center><font size= 4> | ||
+ | '''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]''' | ||
+ | </font size> | ||
+ | |||
+ | Topic: Computing a z-transform | ||
+ | |||
+ | </center> | ||
+ | ---- | ||
+ | ==Question== | ||
Compute the compute the z-transform (including the ROC) of the following DT signal: | Compute the compute the z-transform (including the ROC) of the following DT signal: | ||
Line 9: | Line 19: | ||
---- | ---- | ||
− | == Share your answers below == | + | == Share your answers below == |
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | ||
− | '''No need to write your name: we can find out who wrote what by checking the history of the page.''' | + | '''No need to write your name: we can find out who wrote what by checking the history of the page.''' |
− | + | ||
− | + | ||
− | + | ||
+ | ---- | ||
+ | === Answer 1 === | ||
+ | Andrei Henrique Patriota Campos | ||
<span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 2] − ''u''[''n'' − 1])</span>. | <span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 2] − ''u''[''n'' − 1])</span>. | ||
Line 31: | Line 41: | ||
<span class="texhtml"> = ''X''(''z'') = (9 + 4''z''<sup> − 1</sup> + ''z''<sup> − 2</sup>) / (''z''<sup> − 3</sup>)</span>, for all z in complex plane. | <span class="texhtml"> = ''X''(''z'') = (9 + 4''z''<sup> − 1</sup> + ''z''<sup> − 2</sup>) / (''z''<sup> − 3</sup>)</span>, for all z in complex plane. | ||
− | = | + | :<span style="color:red"> TA's comment: z can not be <math>\infty</math> for the z transform to converge </span> |
− | + | === Answer 2 === | |
<span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 3] − ''u''[''n'' − 1])</span> | <span class="texhtml">''x''[''n''] = ''n''<sup>2</sup>(''u''[''n'' + 3] − ''u''[''n'' − 1])</span> | ||
Line 47: | Line 57: | ||
<br> | <br> | ||
− | === Answer 3 === | + | :<span style="color:red"> TA's comment: When n=0,x[n]=0. So the constant term is 0. ROC is everywhere except z=infinity</span> |
+ | |||
+ | === Answer 3 === | ||
Write it here. | Write it here. | ||
− | === Answer 4 === | + | === Answer 4 === |
− | Write it here. | + | Write it here. |
− | === Answer 5 === | + | === Answer 5 === |
− | Tony Mlinarich | + | Tony Mlinarich |
− | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | + | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> |
− | < | + | <span class="texhtml">''X''(''z'') = ''n''<sup>2</sup>(δ(''n'' + 3) + δ(''n'' + 2) + δ(''n'' + 1) + δ(''n'') + δ(''n'' − 1))''z''<sup> − ''n''</sup></span> |
− | <span class="texhtml">''X''(''z'') = 9''z''<sup>3</sup> + 4''z''<sup>2</sup> + ''z'' + ''1/z'' | + | <span class="texhtml">''X''(''z'') = 9''z''<sup>3</sup> + 4''z''<sup>2</sup> + ''z'' + ''1/z''<\span> |
+ | </span> | ||
+ | :<span style="color:red"> TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= ''n''<sup>2</sup>(δ(''n'' + 3) + δ(''n'' + 2) + δ(''n'' + 1) + δ(''n'')). ROC is everywhere except z=infinity</span> | ||
− | [[ | + | === Answer 7 === |
+ | |||
+ | Yixiang Liu | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n}</math> | ||
+ | |||
+ | This expression equals to zero except n = -3, -2, -1 | ||
+ | |||
+ | so <span class="texhtml">''X''(''z'') = ''x''[ − 3]''z''<sup>3</sup> + ''x''[ − 2]''z''<sup>2</sup> + ''x''[ − 1]''z''<sup>1</sup></span> | ||
+ | |||
+ | = 9z^{3} + 4z^{2} + z | ||
+ | |||
+ | |||
+ | :<span style="color:red"> TA's comment: ROC is everywhere except z=infinity.</span> | ||
+ | |||
+ | === Answer 8 === | ||
+ | |||
+ | Xi Wang | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <span class="texhtml"> = ''X''(''z'') = (9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + ''z''). The range of the value of z is from negative infinity to positive infinity | ||
+ | </span> | ||
+ | |||
+ | :<span style="color:red"> TA's comment: Show your derivation</span> | ||
+ | |||
+ | === Answer 9 === | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-3}^{+1} x[n] z^{-n}</math> | ||
+ | |||
+ | <span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> +2</sup> + ''z'' + 1</span> for all z in complex plane | ||
+ | |||
+ | <br> | ||
+ | |||
+ | :<span style="color:red"> TA's comment: In your second step, the summation should be from -3 to 0 . There should be no constant termsince x[0]=0. ROC is everywhere except z=infinity </span> | ||
+ | |||
+ | === Answer 10 === | ||
+ | |||
+ | Cary Wood | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}</math> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-3}^{0} x[n] z^{-n}</math> | ||
+ | |||
+ | <span class="texhtml"> = ''X''(''z'') = 9''z''<sup> + 3</sup> + 4''z''<sup> + 2</sup> + z, for all z in complex plane</span> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | |||
+ | :<span style="color:red"> TA's comment: ROC is everywhere except z=infinity.</span> | ||
+ | |||
+ | === Answer 11 === | ||
+ | |||
+ | Shiyu Wang | ||
+ | |||
+ | x[n] = n<sup>2</sup>(u[n + 3] − u[n − 1]) | ||
+ | |||
+ | x[n] = n<sup>2 (-3=< n < 1)</sup> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-3}^{0} n^2 z^{-n}</math> <br> | ||
+ | |||
+ | x(z)=9z<sup>3</sup>+4z<sup>2</sup>+z, for all z in complex plane except z=infinity | ||
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] | [[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] | ||
− | === Answer | + | :<span style="color:red"> TA's comment: Simple and straightforward.</span> |
+ | |||
+ | === Answer 12 === | ||
+ | |||
+ | Matt Miller | ||
+ | |||
+ | x[n] = n<sup>2</sup>(u[n+3]-u[n-1]) | ||
+ | |||
+ | x[n] = n<sup>2</sup>u[n+3] - n<sup>2</sup>u[n-1] | ||
+ | |||
+ | x[n] = n<sup>2</sup>|<sup>0</sup><sub>-3</sub> | ||
+ | |||
+ | <math>X(z) = \sum_{n=-3}^{0} n^2 z^{-n}</math> | ||
+ | |||
+ | X(z) = (-3)<sup>2</sup>z<sup>3</sup> + (-2)<sup>2</sup>z<sup>2</sup> + (-1)<sup>2</sup>z<sup>1</sup> + (0)<sup>2</sup>z<sup>0</sup> | ||
+ | |||
+ | X(z) = 9z<sup>3</sup> + 4z<sup>2</sup> + z | ||
− | + | lim z->inf X(1/2) = 0, lim z->0 X(1/2) = inf --> valid for all Z in complex plane. | |
− | < | + | <br> |
− | + | :<span style="color:red"> TA's comment: In the third step, it's better write it as a summation. </span> |
Latest revision as of 11:52, 26 November 2013
Practice Question on "Digital Signal Processing"
Topic: Computing a z-transform
Contents
Question
Compute the compute the z-transform (including the ROC) of the following DT signal:
$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
No need to write your name: we can find out who wrote what by checking the history of the page.
Answer 1
Andrei Henrique Patriota Campos x[n] = n2(u[n + 2] − u[n − 1]).
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ = \sum_{n=-3}^{0} n^2 z^{-n} $
= 9z3 + 4z2 + z
= z3(9 + 4z − 1 + z − 2)
= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.
- TA's comment: z can not be $ \infty $ for the z transform to converge
Answer 2
x[n] = n2(u[n + 3] − u[n − 1])
x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $
X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane
- TA's comment: When n=0,x[n]=0. So the constant term is 0. ROC is everywhere except z=infinity
Answer 3
Write it here.
Answer 4
Write it here.
Answer 5
Tony Mlinarich
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
X(z) = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n) + δ(n − 1))z − n
X(z) = 9z3 + 4z2 + z + 1/z<\span>
- TA's comment: u[n+3]-u[n-1] is non-zero only when n=-3,-2,-1,0. So x[n]= n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n)). ROC is everywhere except z=infinity
Answer 7
Yixiang Liu
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} n^{2}[{u[n+3]-u[n-1]}]z^{-n} $
This expression equals to zero except n = -3, -2, -1
so X(z) = x[ − 3]z3 + x[ − 2]z2 + x[ − 1]z1
= 9z^{3} + 4z^{2} + z
- TA's comment: ROC is everywhere except z=infinity.
Answer 8
Xi Wang
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
= X(z) = (9z + 3 + 4z + 2 + z). The range of the value of z is from negative infinity to positive infinity
- TA's comment: Show your derivation
Answer 9
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-3}^{+1} x[n] z^{-n} $
= X(z) = 9z + 3 + 4z +2 + z + 1 for all z in complex plane
- TA's comment: In your second step, the summation should be from -3 to 0 . There should be no constant termsince x[0]=0. ROC is everywhere except z=infinity
Answer 10
Cary Wood
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-3}^{0} x[n] z^{-n} $
= X(z) = 9z + 3 + 4z + 2 + z, for all z in complex plane
- TA's comment: ROC is everywhere except z=infinity.
Answer 11
Shiyu Wang
x[n] = n2(u[n + 3] − u[n − 1])
x[n] = n2 (-3=< n < 1)
$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $
x(z)=9z3+4z2+z, for all z in complex plane except z=infinity
- TA's comment: Simple and straightforward.
Answer 12
Matt Miller
x[n] = n2(u[n+3]-u[n-1])
x[n] = n2u[n+3] - n2u[n-1]
x[n] = n2|0-3
$ X(z) = \sum_{n=-3}^{0} n^2 z^{-n} $
X(z) = (-3)2z3 + (-2)2z2 + (-1)2z1 + (0)2z0
X(z) = 9z3 + 4z2 + z
lim z->inf X(1/2) = 0, lim z->0 X(1/2) = inf --> valid for all Z in complex plane.
- TA's comment: In the third step, it's better write it as a summation.