(One intermediate revision by one other user not shown) | |||
Line 3: | Line 3: | ||
[[Category:ECE438Fall2011Boutin]] | [[Category:ECE438Fall2011Boutin]] | ||
[[Category:problem solving]] | [[Category:problem solving]] | ||
− | = Properties of | + | <center><font size= 4> |
+ | '''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]''' | ||
+ | </font size> | ||
+ | |||
+ | Topic: Properties of z-transform | ||
+ | |||
+ | </center> | ||
+ | ---- | ||
+ | ==Question== | ||
Prove the following scaling property of the z-transform: | Prove the following scaling property of the z-transform: | ||
Latest revision as of 11:45, 26 November 2013
Practice Question on "Digital Signal Processing"
Topic: Properties of z-transform
Question
Prove the following scaling property of the z-transform:
$ z_0^2 x[n] \rightarrow X \left( \frac{z}{z_0}\right) $
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
I think there is a mistake, it should be $ z_0^n $ instead of $ z_0^2 $.
proof:
$ x'[n]=z_0^n x[n] $
$ Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n} $
$ let k=\frac{z}{z_0} $
$ Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0}) $
- Instructor's comment: It is a bit confusing to use k as a complex variable. Usually, k represents an integer. -pm
Answer 2
I agreed with above, it should be $ z_0^n $ not $ z_0^2 $, otherwise $ z_0^2 $ is just a constant and the transform will just be $ z_0^2 { X \left( z \right)} $
- TA's comments: Good catch and reasoning.
$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $
Answer 3
$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $