(4 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:ECE438Fall2011Boutin]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
= Properties of the Z-transform =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Properties of z-transform
 +
 
 +
</center>
 +
----
 +
==Question==
 
Prove the following scaling property of the z-transform:
 
Prove the following scaling property of the z-transform:
  
Line 24: Line 32:
  
 
<math>Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0})</math>
 
<math>Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0})</math>
 
+
:<span style="color:orange">Instructor's comment: It is a bit confusing to use k as a complex variable. Usually, k represents an integer. -pm </span>
 
=== Answer 2===
 
=== Answer 2===
 
I agreed with above, it should be  <math>z_0^n</math> not <math>z_0^2</math>, otherwise <math>z_0^2</math> is just a constant and the transform will just be <math>z_0^2 { X \left( z \right)} </math>
 
I agreed with above, it should be  <math>z_0^n</math> not <math>z_0^2</math>, otherwise <math>z_0^2</math> is just a constant and the transform will just be <math>z_0^2 { X \left( z \right)} </math>
 +
 +
:<span style="color:green">TA's comments: Good catch and reasoning.</span>
  
 
<math>Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} =  X \left( \frac{z}{z_0}\right) </math>
 
<math>Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} =  X \left( \frac{z}{z_0}\right) </math>
Line 32: Line 42:
  
 
=== Answer 3===
 
=== Answer 3===
Write it here.
+
<math>Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} =  X \left( \frac{z}{z_0}\right) </math>
  
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 11:45, 26 November 2013

Practice Question on "Digital Signal Processing"

Topic: Properties of z-transform


Question

Prove the following scaling property of the z-transform:

$ z_0^2 x[n] \rightarrow X \left( \frac{z}{z_0}\right) $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

I think there is a mistake, it should be $ z_0^n $ instead of $ z_0^2 $.

proof:

$ x'[n]=z_0^n x[n] $

$ Z[x'[n]]=\sum_{n=-\infty}^{\infty}x'[n]z^{-n}=\sum_{n=-\infty}^{\infty}z_0^n x[n]z^{-n}=\sum_{n=-\infty}^{\infty}x[n](\frac{z}{z_0})^{-n} $

$ let k=\frac{z}{z_0} $

$ Z[z_0^n x[n]]=\sum_{n=-\infty}^{\infty}x[n]k^{-n}=X(k)=X(\frac{z}{z_0}) $

Instructor's comment: It is a bit confusing to use k as a complex variable. Usually, k represents an integer. -pm

Answer 2

I agreed with above, it should be $ z_0^n $ not $ z_0^2 $, otherwise $ z_0^2 $ is just a constant and the transform will just be $ z_0^2 { X \left( z \right)} $

TA's comments: Good catch and reasoning.

$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $


Answer 3

$ Z \left( z_0^n x[n] \right) =\sum_{n=-\infty}^{\infty} z_0^n x[n]z^{-n} =\sum_{n=-\infty}^{\infty} x[n]\left({\frac{z}{z_0}}\right)^{-n} = X \left( \frac{z}{z_0}\right) $


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn