Line 54: | Line 54: | ||
Since X<math>_n(\omega)</math> is generally a different sequence for very <math>\omega</math> ∈ ''S'', what does it mean for X<math>_n</math> to converge? We will discuss different ways in which X<math>_n</math> can converge. | Since X<math>_n(\omega)</math> is generally a different sequence for very <math>\omega</math> ∈ ''S'', what does it mean for X<math>_n</math> to converge? We will discuss different ways in which X<math>_n</math> can converge. | ||
+ | |||
+ | '''Definition''' <math>\qquad</math> X<math>_n</math> '''converges everywhere''' if the sequence X<math>_1(\omega)</math>,X</math>_2(\omega)</math>,... converges to some value X<math>(\omega)</math> ∀<math>\omega</math> ∈ ''S''. We also call this '''sure convergence''' or '''convergence surely'''. | ||
+ | |||
+ | |||
+ | <center>[[Image:fig2_stochastic_convergence.png|350px|thumb|left|Fig 2: Sure Convergence.]]</center> | ||
+ | |||
+ | '''Notation''' <br/> | ||
+ | <center><math>X_n\overset{e}{\rightarrow}X</math></center> | ||
+ | |||
+ | |||
+ | '''Definition''' <math>\qquad</math> X<math>_n</math> '''converges almost everywhere''' or '''almost surely''', if X<math>_n(\omega)</math> → for some A ∈ ''S'' with P(A) = 1. Also known as convergence with probability 1. | ||
+ | |||
+ | '''Notation''' <br/> | ||
+ | <center><math>X_n\overset{a.e.}{\rightarrow}X,\quad X_n\overset{a.s.}{\rightarrow}X,\quad X_n\overset{w.p.1}{\rightarrow}X</math></center> | ||
+ | |||
+ | |||
+ | '''Definition''' <math>\qquad</math> X<math>_n</math> '''converges in mean square''' to X if <br/> | ||
+ | <center><math>E\left[|X_n-X|^2\right]\rightarrow 0</math><br/> | ||
+ | as<br/> | ||
+ | <math>n\rightarrow\infty</math></center> | ||
+ | |||
+ | '''Notation''' <br/> | ||
+ | <center><math>X_n\overset{ms}{\rightarrow}X</math></center> | ||
+ | |||
+ | |||
+ | '''Definition''' X<math>_n</math> '''converges in probability''' to X if ∀<math>\epsilon</math> > 0 <br/> | ||
+ | <center><math>P(|X_n-X|>\epsilon)\rightarrow 0</math> | ||
+ | as<br/> | ||
+ | <math>n\rightarrow\infty</math></center> | ||
+ | Note that P(|X<math>_n</math> - X| > <math>\epsilon</math>) is a sequence of real numbers. | ||
+ | |||
+ | '''Notation'''<br/> | ||
+ | <center><math>X_n\overset{p}{\rightarrow}X</math></center> | ||
+ | |||
+ | |||
+ | '''Definition''' <math>\qquad</math> X<math>_n</math> '''converges in distribution''' to X if <br/> | ||
+ | <center><math>F_{X_n}(x)\rightarrow F_X(x)</math><br/> | ||
+ | as<br/> | ||
+ | <math>n\rightarrow\infty</math></center> | ||
+ | |||
+ | Note that for a fixed x ∈ '''R''', F<math>_n</math>(x) is a sequence of real numbers. | ||
+ | |||
+ | '''Notation''' <br/> | ||
+ | <center><math>X_n\overset{d}{\rightarrow}X</math></center> | ||
+ | |||
+ | We will generally assume that if X<math>_n</math> converges in distribution, then <br/> | ||
+ | <center><math>\frac{F_{X_n}(x)}{dx}\rightarrow\frac{F_X(x)}{dx}</math><br/> | ||
+ | or<br/> | ||
+ | <math>f_{X_n}(x)\rightarrow f_X(x)</math><br/> | ||
+ | as<br/> | ||
+ | <math>n\rightarrow\infty</math></center> | ||
+ | |||
+ | although this is not true in every instance, as seen in the next example. | ||
+ | |||
+ | '''Example''' <math>\qquad</math> Let X<math>_n</math> have pdf <br/> | ||
+ | <center><math>f_{X_n}(x) = 1+\cos 2\pi nx\quad0\leq x\leq 1,\;\;n=1,2,...</math></center> | ||
+ | |||
+ | Then <br> | ||
+ | <center><math>F_{X_n}(x) = \begin{cases} | ||
+ | 0 & x<0 \\ | ||
+ | x+\frac{\sin 2\pi nx}{2\pi n} & 0\leq x\leq 1 \\ | ||
+ | 1 & x>1 | ||
+ | \end{cases}</math></center> | ||
+ | |||
+ | Now <br/> | ||
+ | <center><math>F_{X_n}(x)\rightarrow F_X(x)</math><br/> | ||
+ | as<br/> | ||
+ | <math>n\rightarrow\infty</math><br/> | ||
+ | <math>\forall x\in\mathbb R</math></center> | ||
+ | |||
+ | where <br/> | ||
+ | <center><math>F_X(x)=\begin{cases} | ||
+ | 0 & x<0 \\ | ||
+ | x & 0\leq x\leq 1 \\ | ||
+ | 1 & x>1 | ||
+ | \end{cases}</math></center> | ||
+ | |||
+ | However, f<math>_{Xn}</math> does not converge for x ∈ (0,1). | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | ==Cauchy Criterion for Convergence== | ||
+ | |||
+ | We will now discuss a method |
Revision as of 08:12, 22 November 2013
Random Variables and Signals
Topic 18: Stochastic Convergence
Stochastic Convergence
We will now consider infinite sequences of random variables. We will discuss what it means for such a sequence to converge. This will lead to some very important results: the laws of large numbers and the Central Limit Theorem.
Consider a sequence X$ _1 $,X$ _2 $,..., where each X$ _i $ is a random variable on (S,F,P). We will call this a random sequence (or a discrete-time random process).
Notation $ \qquad $ X$ _n $ may refer to either the sequence itself or to the nth element in the sequence. We may also use {X$ _n $} to denote the sequence, or X$ _n $, n ≥ 1.
The sequence X$ _n $ maps S to the set of all sequences of real numbers, so for a fixed S, X$ _1(\omega) $,X$ _2(\omega) $,... is a sequence of real numbers.
Before looking at convergence, recall the meaning of convergence or a sequence of real numbers.
Definition $ \qquad $ A sequence of real numbers x$ _1 $,x$ _2 $,... converges to a number x ∈ R if ∀$ \epsilon $ > 0, ∃ an n$ _{\epsilon} $ ∈ N such that
If there is such an x ∈ R, we say
or
For a random sequence X$ _n $, the issue of convergence is more complicated since X$ _n $ is a function of $ \omega $ ∈ S.
First look at a motivating example.
Example $ \qquad $ Let X$ _k $ = s + W$ _k $, where s ∈ R and W$ _k $ is a random sequence with E[W$ _k $] = 0 ∀k = 1,2,.... W$ _k $ can be viewed as a noise sequence if we want to know the value of s.
Let
Then, E[Y$ _n $] = s ∀n. But Y$ _n $ is a random variable, so we cannot expect Y$ _n $ = s ∀n. However, we intuitively expect Y$ _n $ to be a better estimate of s as n increases. Does Y$ _n $ → s as n → ∞ ? If so, in what sense?
Types of Convergence
Since X$ _n(\omega) $ is generally a different sequence for very $ \omega $ ∈ S, what does it mean for X$ _n $ to converge? We will discuss different ways in which X$ _n $ can converge.
Definition $ \qquad $ X$ _n $ converges everywhere if the sequence X$ _1(\omega) $,X</math>_2(\omega)</math>,... converges to some value X$ (\omega) $ ∀$ \omega $ ∈ S. We also call this sure convergence or convergence surely.
Notation
Definition $ \qquad $ X$ _n $ converges almost everywhere or almost surely, if X$ _n(\omega) $ → for some A ∈ S with P(A) = 1. Also known as convergence with probability 1.
Notation
Definition $ \qquad $ X$ _n $ converges in mean square to X if
as
Notation
Definition X$ _n $ converges in probability to X if ∀$ \epsilon $ > 0
as
Note that P(|X$ _n $ - X| > $ \epsilon $) is a sequence of real numbers.
Notation
Definition $ \qquad $ X$ _n $ converges in distribution to X if
as
Note that for a fixed x ∈ R, F$ _n $(x) is a sequence of real numbers.
Notation
We will generally assume that if X$ _n $ converges in distribution, then
or
$ f_{X_n}(x)\rightarrow f_X(x) $
as
although this is not true in every instance, as seen in the next example.
Example $ \qquad $ Let X$ _n $ have pdf
Then
Now
as
$ n\rightarrow\infty $
where
However, f$ _{Xn} $ does not converge for x ∈ (0,1).
Cauchy Criterion for Convergence
We will now discuss a method