(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
[[Category:discrete Fourier transform]]
 
[[Category:discrete Fourier transform]]
 
[[Category:ECE438Fall2010Boutin]]
 
[[Category:ECE438Fall2010Boutin]]
 +
[[Category:bonus point project]]
 +
[[Category:ECE]]
 +
[[Category:ECE438]]
 +
[[Category:Fourier transform]]
  
== Discrete Fourier Transform (DFT) ==
+
= Discrete Fourier Transform (DFT) =
 
+
----
 +
A student project for the course [[ECE438]]
 
----
 
----
  
Line 29: Line 34:
  
 
for any a, b complex constant and all <math>x_1[n]</math> and <math>x_2[n]</math> with the same length
 
for any a, b complex constant and all <math>x_1[n]</math> and <math>x_2[n]</math> with the same length
 +
----
 +
==Comments/questions==
 +
*Write a comment here
 +
**answer here
 
----
 
----
 
[[ECE438|Back to ECE438]]
 
[[ECE438|Back to ECE438]]
  
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438 Fall 2010]]
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438 Fall 2010]]

Latest revision as of 07:50, 11 November 2013


Discrete Fourier Transform (DFT)


A student project for the course ECE438


Definition of DFT

DFT

$ X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1 $

IDFT

$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{ }n = 0, 1, 2, 3, ..., N-1 $

X[k] is defined for $ 0 <= k <= N - 1 $ and periodic with period N

X[n] is defined for $ 0 <= n <= N - 1 $ and also periodic with period N


Properties of DFT

Linearity

$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $

for any a, b complex constant and all $ x_1[n] $ and $ x_2[n] $ with the same length


Comments/questions

  • Write a comment here
    • answer here

Back to ECE438

Back to ECE438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang