(New page: == Discrete Fourier Transform (DFT) == ---- == Definition of DFT == '''DFT''' <math>X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1</math>...)
 
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Discrete Fourier Transform (DFT) ==
+
[[Category:discrete Fourier transform]]
 +
[[Category:ECE438Fall2010Boutin]]
 +
[[Category:bonus point project]]
 +
[[Category:ECE]]
 +
[[Category:ECE438]]
 +
[[Category:Fourier transform]]
  
 +
= Discrete Fourier Transform (DFT) =
 +
----
 +
A student project for the course [[ECE438]]
 
----
 
----
  
Line 11: Line 19:
 
'''IDFT'''
 
'''IDFT'''
  
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X(k)e^{j \frac{2{\pi}}{N}kn}}, for \mbox{  }n = 0, 1, 2, 3, ..., N-1</math>
+
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{  }n = 0, 1, 2, 3, ..., N-1</math>
 +
 
 +
X[k] is defined for <math>0 <= k <= N - 1</math> and periodic with period N
 +
 
 +
X[n] is defined for <math>0 <= n <= N - 1</math> and also periodic with period N
  
 
----
 
----
 +
 +
== Properties of DFT ==
 +
 +
'''Linearity'''
 +
 +
<math>ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] </math>
 +
 +
for any a, b complex constant and all <math>x_1[n]</math> and <math>x_2[n]</math> with the same length
 +
----
 +
==Comments/questions==
 +
*Write a comment here
 +
**answer here
 +
----
 +
[[ECE438|Back to ECE438]]
 +
 +
[[2010_Fall_ECE_438_Boutin|Back to ECE438 Fall 2010]]

Latest revision as of 07:50, 11 November 2013


Discrete Fourier Transform (DFT)


A student project for the course ECE438


Definition of DFT

DFT

$ X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1 $

IDFT

$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{ }n = 0, 1, 2, 3, ..., N-1 $

X[k] is defined for $ 0 <= k <= N - 1 $ and periodic with period N

X[n] is defined for $ 0 <= n <= N - 1 $ and also periodic with period N


Properties of DFT

Linearity

$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $

for any a, b complex constant and all $ x_1[n] $ and $ x_2[n] $ with the same length


Comments/questions

  • Write a comment here
    • answer here

Back to ECE438

Back to ECE438 Fall 2010

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics