(New page: Category:ECE600 Category:Lecture notes <center><font size= 4> '''Random Variables and Signals''' </font size> <font size= 3> Topic 12: Random Variables: Distributions</font size>...)
 
Line 11: Line 11:
  
 
----
 
----
 +
 +
We have previously defined statistical independence of two events A and b in ''F''. We will now use that definition to define independence of random variables X and y.
 +
 +
'''Definition''' <math>\qquad</math> Two random variables X and Y on (''S,F,''P) are '''statistically independent''' if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ ''F''. i.e. <br/>
 +
<center><math>P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F</math></center>
 +
 +
There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff <br/>
 +
<center><math>f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R</math></center>
 +
 +
 +
First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then, <br/>
 +
<center><math>\begin{align}
 +
F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\
 +
&= P(X\in A,Y\in B) \\
 +
&= P(X\in A)P(Y\in B) \\
 +
&= P(X\leq x)P(Y\leq y) \\
 +
&= F_X(x)F_Y(y) \\
 +
\Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y)
 +
\end{align}</math></center>
 +
 +
Now assume that f<math>_{XY}</math>(x,y) = f<math>_X</math>(x)f<math>_Y</math>(y) ∀x,y ∈ '''R'''. Then, for any A,B ∈ B('''R''')<br/>
 +
<center><math>\begin{align}
 +
P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\
 +
&=\int_A\int_Bf_X(x)f_Y(y)dydx \\
 +
&=\int_Af_X(x)dx\int_Bf_Y(y)dy \\
 +
&= P(X\in A)P(Y\in B)
 +
\end{align}</math></center>
 +
 +
Thus, X and Y are inedependent iff f<math>_{XY}</math>(x,y) = f<math>_X</math>f)X<math>_Y</math>.
 +
 +
 +
----
 +
 +
== References ==
 +
 +
* [https://engineering.purdue.edu/~comerm/ M. Comer]. ECE 600. Class Lecture. [https://engineering.purdue.edu/~comerm/600 Random Variables and Signals]. Faculty of Electrical Engineering, Purdue University. Fall 2013.
 +
 +
 +
----
 +
 +
==[[Talk:ECE600_F13_Independent_Random_Variables_mhossain|Questions and comments]]==
 +
 +
If you have any questions, comments, etc. please post them on [[Talk:ECE600_F13_Independent_Random_Variables_mhossain|this page]]
 +
 +
 +
----
 +
 +
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]

Revision as of 21:31, 3 November 2013


Random Variables and Signals

Topic 12: Random Variables: Distributions



We have previously defined statistical independence of two events A and b in F. We will now use that definition to define independence of random variables X and y.

Definition $ \qquad $ Two random variables X and Y on (S,F,P) are statistically independent if the events {X ∈ A}, and {Y ∈ B} are independent ∀A,B ∈ F. i.e.

$ P(\{X\in A\}\cap\{Y\in B\})=P(X\in A)P(Y\in B) \quad\forall A,B\in\mathcal F $

There is an alternative definition of independence for random variables that is often used. We will show that X and Y are independent iff

$ f_{XY}(x,y)=f_X(x)f_Y(y)\quad\forall x,y\in\mathbb R $


First assume that X and Y are independent and let A = (-∞,x], B = (-∞,y]. Then,

$ \begin{align} F_{XY}(x,y) &= P(X\leq x,Y\leq y) \\ &= P(X\in A,Y\in B) \\ &= P(X\in A)P(Y\in B) \\ &= P(X\leq x)P(Y\leq y) \\ &= F_X(x)F_Y(y) \\ \Rightarrow f_{XY}(x,y) &= f_X(x)f_Y(y) \end{align} $

Now assume that f$ _{XY} $(x,y) = f$ _X $(x)f$ _Y $(y) ∀x,y ∈ R. Then, for any A,B ∈ B(R)

$ \begin{align} P(X\in A,Y\in B) &= \int_A\int_Bf_{XY}(x,y)dydx \\ &=\int_A\int_Bf_X(x)f_Y(y)dydx \\ &=\int_Af_X(x)dx\int_Bf_Y(y)dy \\ &= P(X\in A)P(Y\in B) \end{align} $

Thus, X and Y are inedependent iff f$ _{XY} $(x,y) = f$ _X $f)X$ _Y $.



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn