(New page: == Theorem == Union is commutative <br/> <math>A\cup B = b\cup A</math> <br/> where <math>A</math> and <math>B</math> are events in a probability space. ---- ==Proof== <math>\begin{a...) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:ECE600]] | ||
+ | [[Category:Set Theory]] | ||
+ | [[Category:Math]] | ||
+ | |||
+ | |||
== Theorem == | == Theorem == | ||
Union is commutative <br/> | Union is commutative <br/> | ||
− | <math>A\cup B = | + | <math>A\cup B = B\cup A</math> <br/> |
− | where <math>A</math> and <math>B</math> are | + | where <math>A</math> and <math>B</math> are sets. |
Line 16: | Line 21: | ||
\blacksquare | \blacksquare | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
+ | ---- | ||
+ | [[Proofs_mhossain|Back to list of all proofs]] |
Latest revision as of 10:21, 1 October 2013
Theorem
Union is commutative
$ A\cup B = B\cup A $
where $ A $ and $ B $ are sets.
Proof
$ \begin{align} A\cup B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{or}\; x\in A\}\\ &= B\cup A\\ \blacksquare \end{align} $