(New page: == Theorem == Union is commutative <br/> <math>A\cup B = b\cup A</math> <br/> where <math>A</math> and <math>B</math> are events in a probability space. ---- ==Proof== <math>\begin{a...)
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[[Category:ECE600]]
 +
[[Category:Set Theory]]
 +
[[Category:Math]]
 +
 +
 
== Theorem ==
 
== Theorem ==
  
 
Union  is commutative <br/>
 
Union  is commutative <br/>
<math>A\cup B = b\cup A</math> <br/>
+
<math>A\cup B = B\cup A</math> <br/>
where <math>A</math> and <math>B</math> are events in a probability space.
+
where <math>A</math> and <math>B</math> are sets.
  
  
Line 16: Line 21:
 
\blacksquare
 
\blacksquare
 
\end{align}</math>
 
\end{align}</math>
 +
 +
----
 +
[[Proofs_mhossain|Back to list of all proofs]]

Latest revision as of 10:21, 1 October 2013


Theorem

Union is commutative
$ A\cup B = B\cup A $
where $ A $ and $ B $ are sets.



Proof

$ \begin{align} A\cup B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{or}\; x\in A\}\\ &= B\cup A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

EISL lab graduate

Mu Qiao