(New page: Category:ECE600 Category:Set Theory Category:Math == Theorem == Union is associative <br/> <math>A\cup (B\cup C) = (A\cup B)\cup C</math> <br/> where <math>A</math>, <math>B...)
 
 
Line 8: Line 8:
 
Union is associative <br/>
 
Union is associative <br/>
 
<math>A\cup (B\cup C) = (A\cup B)\cup C</math> <br/>
 
<math>A\cup (B\cup C) = (A\cup B)\cup C</math> <br/>
where <math>A</math>, <math>B</math> and <math>C</math> are events in a probability space.
+
where <math>A</math>, <math>B</math> and <math>C</math> are sets.
  
  

Latest revision as of 10:20, 1 October 2013


Theorem

Union is associative
$ A\cup (B\cup C) = (A\cup B)\cup C $
where $ A $, $ B $ and $ C $ are sets.



Proof

$ \begin{align} A\cup (B\cup C)&= \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in (B\cup C)\}\\ &= \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\;\mbox{or}\; x\in C\}\\ &= \{x\in\mathcal S:\;x\in (A\cup B)\;\mbox{or}\; x\in C)\}\\ &= (A\cup B)\cup C \\ \blacksquare \end{align} $

Because of this property, A ∪ (B ∪ C) or (A ∪ B) ∪ C is written simply as A ∪ B ∪ C.



Back to list of all proofs

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett