(9 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
*<span style="color:red"> Instructor's comment: Actually, strictly speaking, it should be '''greater''' than 5000HZ. -pm</span>
 
*<span style="color:red"> Instructor's comment: Actually, strictly speaking, it should be '''greater''' than 5000HZ. -pm</span>
  
We'd like a high pass filter that filters our everything below 60 Hz.  
+
We need a high pass filter that filters our everything below 60 Hz.  
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 25: Line 25:
 
We can think of the long term trend as low frequency component and annual cycle as high frequency component. In order to remove the annual cycle, we need a low pass filter.
 
We can think of the long term trend as low frequency component and annual cycle as high frequency component. In order to remove the annual cycle, we need a low pass filter.
 
The sampling rate <math>f_s=12</math>samples/year. The periodic component has frequency of <math>f_c=1</math>cycle/year.  
 
The sampling rate <math>f_s=12</math>samples/year. The periodic component has frequency of <math>f_c=1</math>cycle/year.  
So the low pass filter has cutoff frequency of <math>\omega_s=\frac{2\pi \cdot 1}{12}=\frac{\pi}{6}</math>samples/year
+
 
 +
\\
 +
So the low pass filter has cutoff frequency of <math>\omega_c=\frac{2\pi \cdot 1}{12}=\frac{\pi}{6}</math>
  
 
==Question 3==
 
==Question 3==
 +
<math>\text{a)} \;\; \text{General Relation for the decimation with a factor of } D \,\!</math>.
 +
 +
<math>\text{Let } X(w) = \mathcal{F}(x[n])</math>
 +
 +
<math>\begin{align}
 +
Y(w) &= \sum_{n=-\infty}^{\infty} y[n]e^{-jwn} = \sum_{n=-\infty}^{\infty} x[Dn]e^{-jwn} \\
 +
&= \sum_{m=-\infty, m=Dk}^{\infty} x[m]e^{-j\frac{wm}{D}} = \sum_{m=-\infty}^{\infty} x[m] \left( \sum_{k=-\infty}^{\infty} \delta[m-Dk] \right) e^{-j\frac{wm}{D}} \\
 +
&= \sum_{m=-\infty}^{\infty} x[m] \left( \frac{1}{D} \sum_{k=0}^{D-1} e^{j\frac{2\pi}{D}km} \right) e^{-j\frac{wm}{D}} = \sum_{k=0}^{D-1} \frac{1}{D} \sum_{m=-\infty}^{\infty} x[m]e^{j\left(w-\frac{2\pi}{D}k\right)m} \\
 +
&= \sum_{k=0}^{D-1} \frac{1}{D} X\left(\frac{w-2\pi k}{D}\right) \\
 +
\end{align}</math>
 +
 +
Replacing D with 5 would be the answer.
 +
 +
 +
<math>\text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\!</math>.
 +
 +
<math>\begin{align}
 +
Z(w) &= \sum_{n=-\infty}^{\infty} z[n]e^{-jwn} \\
 +
&= \sum_{n=-\infty}^{\infty} \left( \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-jwn} \\
 +
&= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty}  \delta[n-kL] e^{-jwn} = \sum_{k=-\infty}^{\infty} x[k] e^{-jwkL} \\
 +
&= \sum_{k=-\infty}^{\infty} x[k] e^{-jLwk} = X(Lw) \\
 +
&\end{align}</math>
 +
 +
Since <math>X(w)</math> is periodic with <math>2\pi</math>, <math>Z(w)=X(Lw)</math> is periodic with <math>2\pi/L</math>.
  
 +
Replaing L with 5 would be the answer.
  
 
==Question 4==
 
==Question 4==
Line 39: Line 66:
 
&= 1
 
&= 1
 
\end{align}</math>
 
\end{align}</math>
 +
 +
<math>
 +
X_N(k)  </math> is periodic with N
  
 
*<span style="color:red">Instructor's comments: How about the other values of k? -pm </span>
 
*<span style="color:red">Instructor's comments: How about the other values of k? -pm </span>
Line 65: Line 95:
 
\right.
 
\right.
 
</math>  
 
</math>  
 +
 +
<math class="inline">
 +
X_{12}[k]  </math>  is periodic with 12.
  
 
*<span style="color:red">Instructor's comments: How about k=12, k=13, and all the other values of k? -pm </span>
 
*<span style="color:red">Instructor's comments: How about k=12, k=13, and all the other values of k? -pm </span>
Line 89: Line 122:
 
\right.
 
\right.
 
</math>  
 
</math>  
 +
 +
<math class="inline">
 +
X_{8}[k]  </math>  is periodic with 8.
  
 
*<span style="color:red">Instructor's comments: Don't forget to say that K[k} repeats periodically with period 8. THat way, all values of k are covered. -pm </span>
 
*<span style="color:red">Instructor's comments: Don't forget to say that K[k} repeats periodically with period 8. THat way, all values of k are covered. -pm </span>

Latest revision as of 11:18, 30 September 2013


Homework 6, ECE438, Fall 2013, Prof. Boutin

Please leave all mistakes and instructor's comments as is, unless otherwise noted by Prof. Mimi.


Question 1

The sampling rate should be at least twice of the highest frequency of the signal to avoid aliasing. Let's make it just twice of the highest frequency for illustration.

$ \begin{align} f_s=2 \cdot 2500=5000Hz \end{align} $

  • Instructor's comment: Actually, strictly speaking, it should be greater than 5000HZ. -pm

We need a high pass filter that filters our everything below 60 Hz.

$ \begin{align} \omega_c=\frac{2\pi \cdot f_c }{f_s}=\frac{2\pi \cdot 60 }{5000} \end{align} $

Hw6 1.jpg

Question 2

We can think of the long term trend as low frequency component and annual cycle as high frequency component. In order to remove the annual cycle, we need a low pass filter. The sampling rate $ f_s=12 $samples/year. The periodic component has frequency of $ f_c=1 $cycle/year.

\\ So the low pass filter has cutoff frequency of $ \omega_c=\frac{2\pi \cdot 1}{12}=\frac{\pi}{6} $

Question 3

$ \text{a)} \;\; \text{General Relation for the decimation with a factor of } D \,\! $.

$ \text{Let } X(w) = \mathcal{F}(x[n]) $

$ \begin{align} Y(w) &= \sum_{n=-\infty}^{\infty} y[n]e^{-jwn} = \sum_{n=-\infty}^{\infty} x[Dn]e^{-jwn} \\ &= \sum_{m=-\infty, m=Dk}^{\infty} x[m]e^{-j\frac{wm}{D}} = \sum_{m=-\infty}^{\infty} x[m] \left( \sum_{k=-\infty}^{\infty} \delta[m-Dk] \right) e^{-j\frac{wm}{D}} \\ &= \sum_{m=-\infty}^{\infty} x[m] \left( \frac{1}{D} \sum_{k=0}^{D-1} e^{j\frac{2\pi}{D}km} \right) e^{-j\frac{wm}{D}} = \sum_{k=0}^{D-1} \frac{1}{D} \sum_{m=-\infty}^{\infty} x[m]e^{j\left(w-\frac{2\pi}{D}k\right)m} \\ &= \sum_{k=0}^{D-1} \frac{1}{D} X\left(\frac{w-2\pi k}{D}\right) \\ \end{align} $

Replacing D with 5 would be the answer.


$ \text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\! $.

$ \begin{align} Z(w) &= \sum_{n=-\infty}^{\infty} z[n]e^{-jwn} \\ &= \sum_{n=-\infty}^{\infty} \left( \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-jwn} \\ &= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} \delta[n-kL] e^{-jwn} = \sum_{k=-\infty}^{\infty} x[k] e^{-jwkL} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-jLwk} = X(Lw) \\ &\end{align} $

Since $ X(w) $ is periodic with $ 2\pi $, $ Z(w)=X(Lw) $ is periodic with $ 2\pi/L $.

Replaing L with 5 would be the answer.

Question 4

a) For $ k=0,1,...,N-1 $

$ \begin{align} X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\ &= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\ &= 1 \end{align} $

$ X_N(k) $ is periodic with N

  • Instructor's comments: How about the other values of k? -pm

b) Using Euler Formula, we have

$ \begin{align} x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\ &= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} \end{align} $

Observing that $ x[n] $ has fundamental period $ N=12 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}} \end{align} $

By comparison, we know for $ k=0,1,...,11 $

$ X_{12}[k] = \left\{ \begin{array}{ll} 6, & k=1,3 \\ 0, & otherwise. \end{array} \right. $

$ X_{12}[k] $ is periodic with 12.

  • Instructor's comments: How about k=12, k=13, and all the other values of k? -pm

c)

$ x[n]=(\frac{1}{\sqrt 2} + j\frac{1}{\sqrt 2})^n = (e^{\frac{j\pi}{4}})^n $

Then $ x[n] $ has fundamental period $ N=8 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ e^{\frac{j\pi n}{4}} &= \frac{1}{8}\sum_{n=0}^{7}e^{\frac{j2\pi nk}{8}} \end{align} $

By comparison, we know for $ k=0,1,...,7 $

$ X_{8}[k] = \left\{ \begin{array}{ll} 8, & k=1 \\ 0, & otherwise. \end{array} \right. $

$ X_{8}[k] $ is periodic with 8.

  • Instructor's comments: Don't forget to say that K[k} repeats periodically with period 8. THat way, all values of k are covered. -pm

Question 5

Observing that $ X(k) $ has a fundamental period $ N=4 $

$ \begin{align} x[n] &= \frac{1}{N}\sum_{k=0}^{N-1}(e^{j \pi k }+e^{-j \frac{\pi}{2} k})e^{\frac{j2\pi nk}{N}} \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n+2)k}{4}-j2\pi k} + e^{\frac{j2\pi (n-1)k}{4}}) \\ &= \frac{1}{4}\sum_{k=0}^{3}(e^{\frac{j2\pi (n-2)k}{4}} + e^{\frac{j2\pi (n-1)k}{4}}) \\ \end{align} $

when $ n\neq 1 \text{ or } 2 $, using geometric series summation formula we have

$ x[n]=\frac{1}{4}( \frac{1-e^{j2\pi (n-2)}}{1-e^{\frac{j2\pi (n-2)}{4}}} + \frac{1-e^{j2\pi (n-1)}}{1-e^{\frac{j2\pi (n-1)}{4}}} ) = 0 $

when $ n=1 \text{ or } 2 $

$ x[n]=\sum_{k=0}^{3}1=4 $

$ x[n] $ will be periodic with 4.

NOTE: In general, $ X(k) $ does not need to have a length equal to the fundamental period. Suppose N is an arbitrary number, we can still derive the IDFT using argument that is similar to the one described above.


Back to HW6ECE$38F13

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva