Line 105: | Line 105: | ||
<math>= -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k</math> | <math>= -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k</math> | ||
− | <math>= \sum_{k=0}^{+\infty}[(-\frac{1}{3}) | + | <math>= \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k</math> |
Substitute k with -n | Substitute k with -n | ||
− | <math>= \sum_{n=-\infty}^{+\infty} | + | <math>= \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n}</math> |
Look up Z transform equation on RHEA table and see that X(z) becomes... | Look up Z transform equation on RHEA table and see that X(z) becomes... | ||
− | <math>x[n]=(-3^{n-1}-2^{n-1})u[-n]</math> | + | <math> x[n]=(-3^{n-1}-2^{n-1})u[-n] </math> |
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] |
Revision as of 21:10, 19 September 2013
Contents
Practice Question, ECE438 Fall 2013, Prof. Boutin
On computing the inverse z-transform of a discrete-time signal.
Compute the inverse z-transform of
$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $
$ = -\frac{1}{3-z}-\frac{1}{2-z} $
$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $
$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $
$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $
Let k=-n
$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $
by comparison with z-transform formula
$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $
Answer 2
Kyungjun Kim
Using a partial fraction expansion, we can change the original equation to
$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get
$ = -\frac{1}{3-z}-\frac{1}{2-z} $
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of
$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $
$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $
$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $
$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $
Then let k=-n
$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $
Comparing it with z-transform formula, we can get
$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $
Answer 3
By Yeong Ho Lee
First, using partial fraction we get..
$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $
A(2-z) + B(3-z) = 1
let z=2, then B=1
let z=3, then A=-1
$ = -\frac{1}{3-z}+\frac{1}{2-z} $
$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $
$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $
$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $
now let n = -k
$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $
by comparison with z-transfrom formula
$ x[n]=-3^{n-1}u[-n]+2^{n-1}u[-n] $
$ x[n]=(-3^{n-1}+2^{n-1})u[-n] $
Answer 4
$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $
$ = -\frac{1}{3-z} - \frac{1}{2-z} $
$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $
$ = -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k $
$ = \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k $
Substitute k with -n
$ = \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n} $
Look up Z transform equation on RHEA table and see that X(z) becomes...
$ x[n]=(-3^{n-1}-2^{n-1})u[-n] $