Line 73: | Line 73: | ||
===Answer 4=== | ===Answer 4=== | ||
− | + | ||
+ | <math> X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} </math> | ||
+ | |||
+ | <math> X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} </math> | ||
+ | |||
+ | <math> for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. </math> | ||
+ | |||
+ | <math> for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 </math> | ||
+ | |||
+ | or diverges else. | ||
+ | |||
+ | for the DTFT for this signal, | ||
+ | |||
+ | <math> for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, | ||
+ | so it is impossible to have e^{j\omega}, because ROC is bigger at 3 </math> | ||
+ | |||
+ | <math> for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: </math> | ||
+ | |||
+ | <math> \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} </math> | ||
+ | |||
+ | for all, this signal can't have DTFT. | ||
+ | |||
+ | |||
---- | ---- | ||
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] |
Revision as of 16:35, 19 September 2013
Contents
Practice Problem on Z-transform computation
Compute the z-transform (including the ROC) of the following DT signal:
$ x[n]=3^n u[-n+3] \ $
Then use your answer to obtain the Fourier transform of the signal. (Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
x[n] = 3nu[-n + 3]
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k = -n+3, n = -k+3
$ X(z) = \sum_{k=0}^{+\infty} (\frac{3}{z})^{-k+3} $
$ X(z) = (\frac{3}{z})^{3} \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = (\frac{27}{z^3}) \sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
By geometric series formula,
$ X(z) = (\frac{27}{z^3}) (\frac{1}{1-(\frac{z}{3})}) $ ,for |z| < 3
X(z) = diverges, else
So,
$ X(z) = (\frac{3}{3-z}) $ with ROC, |z| < 3
Answer 2
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let k=-n+3, n=3-k, then
$ X(z) = \sum_{k=-\infty}^{+\infty} (3)^{n-k}u[k](z)^{-3+k} $
$ X(z) = (\frac{3}{z})^{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^{k} $
$ X(z) = \left\{ \begin{array}{l l} (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} &, if \quad |z| < 3\\ \text{diverges} &, \quad \text{otherwise} \end{array} \right. $
$ \mathcal{F}(x[n]r^{-n}) = X(3e^{jw}) = \mathcal{X}(w) = \frac{\frac{3}{3e^{jw}}}{1-e^{jw}} $
Answer 3
Kyungjun Kim
$ X(z) = \sum_{n=-\infty}^{+\infty} 3^n u[-n+3] z^{-n} $
Let l=-n+3, n=3-l, then
$ X(z) = \sum_{l=-\infty}^{+\infty} (3)^{n-l}u[k]z^{-3+l} $
$ X(z) = (\frac{3}{z})^{3}\sum_{l=0}^{+\infty} (\frac{z}{3})^{l} $
$ X(z) = (\frac{3}{z})^3 \frac{1}{1-\frac{z}{3}} $ if |z| < 3
Answer 4
$ X[Z] = \sum_{n=-\infty}^{+\infty} 3^{n}u[n+3] Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} 3^{n}Z^{-n} $
$ X[Z] = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $
$ X[Z] = \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n} + \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, no effect, because this converges everywhere on plane. $
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n}) = \frac{1}{1-\frac{3}{z}}, if |\frac{3}{z}|<1, |z|>3 $
or diverges else.
for the DTFT for this signal,
$ for \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \frac{1}{1-\frac{3}{z}}, |z|>3, so it is impossible to have e^{j\omega}, because ROC is bigger at 3 $
$ for \sum_{n=-3}^{n=-1} (\frac{3}{z})^{n}, the DTFT is follow: $
$ \sum_{n=-3}^{n=-1} (\frac{3}{e^{j\omega}})^{n} $
for all, this signal can't have DTFT.