Line 1: | Line 1: | ||
− | + | <br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | = [[:Category:Problem solving|Practice Question]], [[ECE438]] Fall 2013, [[User:Mboutin|Prof. Boutin]] = | ||
+ | |||
+ | On computing the inverse z-transform of a discrete-time signal. | ||
− | |||
− | |||
---- | ---- | ||
+ | |||
Compute the inverse z-transform of | Compute the inverse z-transform of | ||
Line 15: | Line 12: | ||
(Write enough intermediate steps to fully justify your answer.) | (Write enough intermediate steps to fully justify your answer.) | ||
+ | |||
---- | ---- | ||
− | ==Share your answers below== | + | |
− | You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | + | == Share your answers below == |
+ | |||
+ | You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too! | ||
+ | |||
---- | ---- | ||
− | ===Answer 1=== | + | |
+ | === Answer 1 === | ||
<math>X[z] = \sum_{n=0}^{+\infty} 3^{-1-n} z^{n}</math> | <math>X[z] = \sum_{n=0}^{+\infty} 3^{-1-n} z^{n}</math> | ||
+ | |||
<math> = \sum_{n=-\infty}^{+\infty} u[n] 3^{-1-n} z^{n}</math> | <math> = \sum_{n=-\infty}^{+\infty} u[n] 3^{-1-n} z^{n}</math> | ||
NOTE: Let n=-k | NOTE: Let n=-k | ||
− | <math> = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k}</math> | + | <math> = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k}</math> ('''compare with''' <math>\sum_{n=-\infty}^{+\infty} x[n] z^{-k}</math>) |
− | ('''compare with''' <math>\sum_{n=-\infty}^{+\infty} x[n] z^{-k}</math>) | + | |
<math> = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k}</math> | <math> = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k}</math> | ||
− | Therefore, < | + | Therefore, <span class="texhtml">''x''[''n''] = 3<sup> − 1 + ''n''</sup>''u''[ − ''n'']</span> |
− | === Answer 2=== | + | === Answer 2 === |
− | + | ||
− | <math>X(z) = \frac{1}{3} | + | <math>X(z) = \frac{1}{3-z} = \frac{1}{3} \frac{1}{1-\frac{z}{3}} </math> |
− | + | <math>X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^n </math> | |
− | + | Let n = -k | |
− | + | <math>X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[-k]3^{k}z^{-k} </math> | |
− | < | + | By comparison with the x-transform formula, |
− | ===Answer 3=== | + | |
− | By Yeong Ho Lee | + | <span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span> |
+ | |||
+ | === Answer 3 === | ||
+ | |||
+ | By Yeong Ho Lee | ||
<math> X[z] = \sum_{n=0}^{\infty}z^{n}3^{-n-1} </math> | <math> X[z] = \sum_{n=0}^{\infty}z^{n}3^{-n-1} </math> | ||
− | <math> = \sum_{n=-\infty}^{+\infty} 3^{-n-1}z^{n}u[n] </math> | + | <math> = \sum_{n=-\infty}^{+\infty} 3^{-n-1}z^{n}u[n] </math> |
Now, let n = -k | Now, let n = -k | ||
− | <math> = \sum_{n=-\infty}^{+\infty} 3^{k-1}z^{-k}u[-k] </math> | + | <math> = \sum_{n=-\infty}^{+\infty} 3^{k-1}z^{-k}u[-k] </math> |
− | Using the z-transform formula, | + | Using the z-transform formula, <span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span> |
− | < | + | |
− | ===Answer 4=== | + | === Answer 4 === |
− | + | ||
+ | Write it here. | ||
+ | <br> | ||
+ | <br> | ||
− | ===Answer 5=== | + | === Answer 5 === |
− | By Yixiang Liu | + | By Yixiang Liu |
− | <math>X(z) = \frac{1}{3-Z}</math> | + | <math>X(z) = \frac{1}{3-Z}</math> |
+ | <br> <math>X(z) = \frac{\frac{1}{3}} { 1-\frac{Z}{3}} </math> | ||
− | <math>X(z) = | + | <math>X(z) = \frac{1}{3} * \frac{1} { 1-\frac{Z}{3}} </math> |
− | + | by geometric series | |
− | + | <math>X(z) = \frac{1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^n </math> | |
− | <math>X(z) = \frac{1}{3} \sum_{n= | + | <math>X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n](\frac{z}{3})^n </math> |
− | <math>X(z) = \frac{1}{3} \sum_{ | + | <math>X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{z}{3})^{-k} </math> |
− | <math>X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{ | + | <math>X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{1}{3})^{-k} Z^{-k}</math> |
− | + | By comparison with the x-transform formula | |
− | + | <math>x[n] = \frac{1}{3} u[-n](\frac{1}{3})^{-n} </math> | |
− | <math>x[n] = | + | <math>x[n] = (\frac{1}{3})^{-n+1} u[-n] </math> |
− | < | + | <span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span> |
− | |||
---- | ---- | ||
+ | |||
+ | Answer 6 - Ryan Atwell | ||
+ | |||
+ | <math>X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|<3 </math> | ||
+ | |||
+ | <math>X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} </math> | ||
+ | |||
+ | <math>X(z) = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{z}{3})^{n} </math> | ||
+ | |||
+ | <math>X(z) = \frac{1}{3} \sum_{n=-\infty}^{\infty} u[n](\frac{z}{3})^{n}</math> | ||
+ | |||
+ | n=-k | ||
+ | |||
+ | |||
+ | <math>X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k](\frac{z}{3})^{-k}</math> | ||
+ | |||
+ | <math>X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k]{3}^{k}{z}^{-k}</math> | ||
+ | |||
+ | |||
+ | <math>X(z) = \sum_{k=-\infty}^{\infty} u[-k]{3}^{k-1}{z}^{-k}</math> | ||
+ | |||
+ | by formula | ||
+ | |||
+ | <math>X[n]={3}^{n-1}u[-n]</math> | ||
+ | |||
---- | ---- | ||
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] | ||
+ | </math> | ||
+ | |||
+ | [[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]] |
Revision as of 16:17, 19 September 2013
Contents
Practice Question, ECE438 Fall 2013, Prof. Boutin
On computing the inverse z-transform of a discrete-time signal.
Compute the inverse z-transform of
$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|<3 $.
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
$ X[z] = \sum_{n=0}^{+\infty} 3^{-1-n} z^{n} $
$ = \sum_{n=-\infty}^{+\infty} u[n] 3^{-1-n} z^{n} $
NOTE: Let n=-k
$ = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k} $ (compare with $ \sum_{n=-\infty}^{+\infty} x[n] z^{-k} $)
$ = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k} $
Therefore, x[n] = 3 − 1 + nu[ − n]
Answer 2
$ X(z) = \frac{1}{3-z} = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $
$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^n $
Let n = -k
$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[-k]3^{k}z^{-k} $
By comparison with the x-transform formula,
x[n] = 3n − 1u[ − n]
Answer 3
By Yeong Ho Lee
$ X[z] = \sum_{n=0}^{\infty}z^{n}3^{-n-1} $
$ = \sum_{n=-\infty}^{+\infty} 3^{-n-1}z^{n}u[n] $
Now, let n = -k
$ = \sum_{n=-\infty}^{+\infty} 3^{k-1}z^{-k}u[-k] $
Using the z-transform formula, x[n] = 3n − 1u[ − n]
Answer 4
Write it here.
Answer 5
By Yixiang Liu
$ X(z) = \frac{1}{3-Z} $
$ X(z) = \frac{\frac{1}{3}} { 1-\frac{Z}{3}} $
$ X(z) = \frac{1}{3} * \frac{1} { 1-\frac{Z}{3}} $
by geometric series
$ X(z) = \frac{1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^n $
$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n](\frac{z}{3})^n $
$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{z}{3})^{-k} $
$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{1}{3})^{-k} Z^{-k} $
By comparison with the x-transform formula
$ x[n] = \frac{1}{3} u[-n](\frac{1}{3})^{-n} $
$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $
x[n] = 3n − 1u[ − n]
Answer 6 - Ryan Atwell
$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|<3 $
$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $
$ X(z) = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{z}{3})^{n} $
$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{\infty} u[n](\frac{z}{3})^{n} $
n=-k
$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k](\frac{z}{3})^{-k} $
$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k]{3}^{k}{z}^{-k} $
$ X(z) = \sum_{k=-\infty}^{\infty} u[-k]{3}^{k-1}{z}^{-k} $
by formula
$ X[n]={3}^{n-1}u[-n] $