Line 40: Line 40:
  
 
=== Answer 2===
 
=== Answer 2===
Write it here.
+
 
 +
alec green
 +
 
 +
an exponential can be expanded into the series:
 +
 
 +
<math>e^{x} = \sum_{n=0}^{+\infty}\frac{x^{n}}{n!}</math>
 +
 
 +
<math>X(z) = e^{-2z} = \sum_{n=0}^{+\infty}(\frac{(-2z)^{n}}{n!} = \frac{(-2)^{n}}{n!}z^{n})</math>
 +
 
 +
<math> = \sum_{n=-\infty}^{+\infty}u[n]\frac{(-2)^{n}}{n!}z^{n}</math>
 +
 
 +
letting k = -n:
 +
 
 +
<math> = \sum_{k=-\infty}^{+\infty}u[-k]\frac{(-2)^{-k}}{(-k)!}z^{-k}</math>
 +
 
 +
and by comparison with:
 +
 
 +
<math>X(z) = \sum_{n=-\infty}^{+\infty}x[n]z^{-n}</math>
 +
 
 +
<math>x[n] = u[-n]\frac{(-2)^{-n}}{(-n)!}</math>
 +
 
 +
due to the step function in the x[n], the factiorial in x[n] is never evaluated on a negative argument (which would be undefined).
 +
 
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.

Revision as of 16:14, 19 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) = e^{-2z}. $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Gena Xie

$ X(z) = e^{-2z}. $


By Taylor Series,

$ X(z) = e^{-2z} = \sum_{n=0}^{+\infty}\frac{{(-2 z)} ^ {n}}{n!} $


substitute n by -n

$ X(z) = \sum_{n=-\infty}^{0}\frac { { (-2) } ^ {-n} } { (-n)! } {z^{-n}} = \sum_{n=-\infty}^{+\infty} \frac { { (-2) } ^ {-n} } { (-n)! } u[-n]{z^{-n}} $


based on the definition,

$ X(z) = \frac{ {(-2)} ^ {-n} } { (-n)! } u[-n] $

Answer 2

alec green

an exponential can be expanded into the series:

$ e^{x} = \sum_{n=0}^{+\infty}\frac{x^{n}}{n!} $

$ X(z) = e^{-2z} = \sum_{n=0}^{+\infty}(\frac{(-2z)^{n}}{n!} = \frac{(-2)^{n}}{n!}z^{n}) $

$ = \sum_{n=-\infty}^{+\infty}u[n]\frac{(-2)^{n}}{n!}z^{n} $

letting k = -n:

$ = \sum_{k=-\infty}^{+\infty}u[-k]\frac{(-2)^{-k}}{(-k)!}z^{-k} $

and by comparison with:

$ X(z) = \sum_{n=-\infty}^{+\infty}x[n]z^{-n} $

$ x[n] = u[-n]\frac{(-2)^{-n}}{(-n)!} $

due to the step function in the x[n], the factiorial in x[n] is never evaluated on a negative argument (which would be undefined).


Answer 3

Write it here.

Answer 4

Write it here.



Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang