Line 38: Line 38:
 
=== Answer 2===
 
=== Answer 2===
 
Kyungjun Kim
 
Kyungjun Kim
 +
 
Using a partial fraction expansion, we can change the original equation to  
 
Using a partial fraction expansion, we can change the original equation to  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
+
 
Where A = 1, B = -1, so we get
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get
 +
 
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of <math> \frac{1}{1-r} </math>, which is equal to <math> sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>
+
 
 +
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of  
 +
 
 +
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>
 +
 
 
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
 
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
 +
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>  
 +
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
 
<math>= \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n</math>  
 +
 
Then let k=-n
 
Then let k=-n
 +
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
 
<math>= \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k}</math>  
 +
 
Comparing it with z-transform formula, we can get
 
Comparing it with z-transform formula, we can get
  

Revision as of 15:55, 19 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $

Answer 2

Kyungjun Kim

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $

Answer 3

Write it here.

Answer 4

Write it here.



Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn