Line 72: Line 72:
  
 
===Answer 6===
 
===Answer 6===
 +
Xiang Zhang
 +
 +
 
from the equation we can get that
 
from the equation we can get that
  

Revision as of 15:05, 19 September 2013


Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= u[n+2]-u[n-1] $

See these Signal Definitions if you do not know what is the step function "u[n]".

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = u[n+2]-u[n-1] $.

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ = \sum_{n=-2}^{0} x[n] e^{-j\omega n} $

$ = 1+ e^{j\omega} + e^{2j\omega} $

Instructor's comment: Short and sweet. I like that.

Answer 2

Green26 ece438 hmwrk3 rect.png

$ X_{2\pi}(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ = \sum_{n=-2}^{0} x[n] e^{-j\omega n} $

$ = e^{2j\omega} + e^{j\omega} + 1 $

Instructor's comment: It does help to visualize the signal first.

Answer 3

$ X(\omega) = \sum_{n=-\infty}^{+\infty} (u[n+2] -u[n-1]) e^{-j\omega n} $

$ = \sum_{n=-2}^{+\infty} u[n+2] e^{-j\omega n} - \sum_{n=1}^{+\infty} u[n-1] e^{-j\omega n} $

$ = \sum_{n=-2}^{0} (u[n+2] -u[n-1]) e^{-j\omega n} $

$ = e^{2j\omega} + e^{j\omega} + 1 $

Answer 4

$ x[n] = u[n+2]-u[n-1] $


$ x[n] = ((\delta[-2]) +(\delta[-1]) +(\delta[0])) $ ( Instructor's comment: The right-hand side does not depend on n. Unless your signal is constant, this means you made a mistake.)

so $ X[Z] = e^{2 j \omega} +e^{j \omega} +1 $

Answer 5

$ x[n] = u[n+2] - u[n-1] $

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ X_(\omega) = \sum_{n=-2}^{0} e^{-j\omega n} $

$ X_(\omega) = 1 + e^{j\omega}+ e^{2j\omega} $

Answer 6

Xiang Zhang


from the equation we can get that

$ X(n) = u[n+2] - u[n-1] = \left\{ \begin{array}{l l} 1 & \quad when \quad n = -2,-1,0\\ 0 & \quad \text{else} \end{array} \right. $

Hence, substitute into the DTFT equation,

$ X_(\omega) = \sum_{n = -\infty}^{ \infty} x[n] e^{-j\omega n} $

change the limit to

$ X_(\omega) = \sum_{n = -2}^{ 0} e^{-j\omega n} $

Then, we expand to the normal expression.

$ X_(\omega) = 1 + e^{j \omega} + e^{j 2 \omega} $


Answer 7

$ X(\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j2\omega n} $

$ X(\omega) = e^{-j2\omega n}(\delta (n+2)-\delta (n+1)+\delta (n)) $ (Instructor's comment: The right-hand-side depends on n, but the left-hand-side does not. This means you made a mistake.)

$ X(\omega) = e^{-j2\omega} + e^{-j\omega} + 1 \ $

Answer 8

x[n] = u[n+2]-u[n-1]

$ X(\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n} $

$ = \sum_{n=-2}^0 x[n]e^{-j\omega n} $

$ = e^{j\omega 2}+e^{j\omega}+1 \ $


Back to ECE438 Fall 2013

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn