Line 37: | Line 37: | ||
Thus, | Thus, | ||
− | <math>X(Z) = -\sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n}</math> | + | <math>X(Z) = -\frac{1}{3} \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n}</math> |
− | <math>X(Z) = -\sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math> | + | <math>X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math> |
− | <math>X(Z) = -\sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} -\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1}</math> | + | <math>X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} -\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1}</math> |
− | In <math>-\sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n}</math>, Let k=-n, then -k=n | + | In <math>-\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n}</math>, Let k=-n, then -k=n |
In <math>\frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math>, Let i=n+1, then n=i-1 | In <math>\frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math>, Let i=n+1, then n=i-1 | ||
− | <math>-\sum_{n=-\infty}^{+\infty} u[ | + | <math>-\sum_{n=-\infty}^{+\infty} u[n] (\frac{1}{3})^{n+1} Z^{n}-\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1}</math> |
− | <math>-\sum_{n=-\infty}^{+\infty} u[-k] (\frac{1}{3})^{-k+1} -\sum_{n=-\infty}^{+\infty} u[i-1] 2^{i-1} Z^{-i}</math> | + | <math>-\sum_{n=-\infty}^{+\infty} u[-k] (\frac{1}{3})^{-k+1} Z^{-k}-\sum_{n=-\infty}^{+\infty} u[i-1] 2^{i-1} Z^{-i}</math> |
− | Therefore, <math>x(n) = -u[n-1] 3^{n-1}</math> | + | Therefore, <math>x(n) = -u[-n] 3^{n-1} - u[n-1] 3^{n-1}</math> |
Revision as of 14:50, 19 September 2013
Contents
Practice Question, ECE438 Fall 2013, Prof. Boutin
On computing the inverse z-transform of a discrete-time signal.
Compute the inverse z-transform of
$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad 2<|z|<3 $.
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
Ruofei
$ X(Z) = \frac{1}{(3-Z) (2-Z)} $
$ X(Z) = -\frac{1}{3-Z} + \frac{1}{2-Z} $
$ X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} + \frac{1}{Z} \frac{1}{\frac{2}{Z}-1} $
$ X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} - \frac{1}{Z} \frac{1}{1-\frac{2}{Z}} $
Since $ |2|<Z<|3| $
$ \frac{1}{1-\frac{2}{Z}} = \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n} $
$ \frac{1}{1-\frac{Z}{3}} = \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} $
Thus,
$ X(Z) = -\frac{1}{3} \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n} $
$ X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n} $
$ X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} -\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1} $
In $ -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} $, Let k=-n, then -k=n
In $ \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n} $, Let i=n+1, then n=i-1
$ -\sum_{n=-\infty}^{+\infty} u[n] (\frac{1}{3})^{n+1} Z^{n}-\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1} $
$ -\sum_{n=-\infty}^{+\infty} u[-k] (\frac{1}{3})^{-k+1} Z^{-k}-\sum_{n=-\infty}^{+\infty} u[i-1] 2^{i-1} Z^{-i} $
Therefore, $ x(n) = -u[-n] 3^{n-1} - u[n-1] 3^{n-1} $
Answer 2
Write it here.
Answer 3
Write it here.
Answer 4
Write it here.