(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]]
 
[[Category:ECE301Spring2011Boutin]]
[[Category:problem solving]]
+
[[Category:ECE301]]
= Practice Question on Computing the Fourier Series continuous-time signal=
+
[[Category:signals and systems]]
 +
[[Category:Problem_solving]]
 +
[[Category:Fourier series]]
 +
 
 +
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Series continuous-time signal=
 
Obtain the Fourier series the CT signal
 
Obtain the Fourier series the CT signal
  
Line 53: Line 57:
 
<math>x(t) = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\frac{2\pi}{T}t}</math>
 
<math>x(t) = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\frac{2\pi}{T}t}</math>
  
<math>x(t) = \sum_{k=-5}^{-5} a_{k}e^{jk\frac{ \pi}{10}t}</math>
+
<math>x(t) = \sum_{k=-5}^{-5} a_{k}e^{jk\frac{ \pi}{10}t}</math> I changed the limits of the sum because <math class="inline">a_{k}</math> is 0 for anything outside that range.
  
 
===Answer 3===
 
===Answer 3===

Latest revision as of 11:59, 16 September 2013


Practice Question on Computing the Fourier Series continuous-time signal

Obtain the Fourier series the CT signal

$ x(t) = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq t \leq 5,\\ 0, & \text{ for } 5< |t| \leq 10, \end{array} \right. \ $

x(t) periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ k=0\, $

$ a_0=\frac{1}{20}\int_{-10}^{10}x(t)e^{-0}dt=\frac{1}{20}\int_{-5}^{5}1dt=\frac{1}{2} $

$ k\ne0 $

$ a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg) $

$ x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t} $

--Cmcmican 21:35, 7 February 2011 (UTC)

TA's comment: That looks fine. The expression for $ a_k $ is better written in terms of a sin function, though. Regarding the synthesis of $ x(t) $, you got it wrong actually. The complex exponentials should not have a minus sign in their exponents and for $ k=0 $ the complex exponential has a frequency of zero (DC).
Another thing is that you may also further simplify $ x(t) $ and write it in terms of sin waves only. You will actually notice some pattern in the frequencies of these sin waves.

Answer 2

First I plotted it out, thanks to WolframAlpha EthanHall ECE301 S11 Wolframalpha-20110215211454118.gif

Then I used the equation $ a_{k} = \frac{1}{T}\int_{0}^{20}x(t)e^{-jk(\frac{2\pi}{T})t}dt $ where T = 20. You can change the limits of the integral to -10 and 10 since the function is periodic. We just need it over one period.

Solving for $ a_{0} $ first we get $ a_{0} = \frac{1}{20} \int_{-10}^{10}x(t)e^{-j(0)(\frac{2\pi}{20})t}dt $. We know that x(t) = 0 except for -5 < t < 5 where it is 1.

$ a_{0} = \frac{1}{20} \int_{-5}^{5}(1)e^{(0)}dt = \frac{1}{20}x \bigg|_{-5}^{5} = \frac{1}{2} $

$ a_{k} = \frac{1}{20}\int_{-5}^{5}(1)e^{-jk(\frac{2\pi}{20})t}dt; \text{ where } -5 < k <5 \text{ and }k \neq 0 $

$ a_{k} = \frac{1}{20} \left[ \frac{e^{-jk(\frac{\pi}{10})t}}{-jk(\frac{\pi}{10})}\right]_{-5}^{5} $

$ a_{k} = \frac{1}{20}\left(\frac{1}{-jk\frac{\pi}{10}}\right) \left[ e^{-jk(\frac{\pi}{10})5} - e^{-jk(\frac{\pi}{10})(-5)} \right] $

$ a_{k}= \frac{-1}{2jk}\left[ e^{-\frac{jk\pi}{2}} - e^{\frac{jk\pi}{2}} \right]\text{ for }-5 < k < 5\text{ and }k \neq 0\text{, all others }0 $

$ x(t) = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\frac{2\pi}{T}t} $

$ x(t) = \sum_{k=-5}^{-5} a_{k}e^{jk\frac{ \pi}{10}t} $ I changed the limits of the sum because $ a_{k} $ is 0 for anything outside that range.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang