(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]]
 
[[Category:ECE301Spring2011Boutin]]
[[Category:problem solving]]
+
[[Category:ECE301]]
= Practice Question on Computing the Fourier Series continuous-time signal=
+
[[Category:signals and systems]]
 +
[[Category:Problem_solving]]
 +
[[Category:Fourier series]]
 +
 
 +
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Series continuous-time signal=
 
Obtain the Fourier series the CT signal
 
Obtain the Fourier series the CT signal
  
Line 27: Line 31:
 
<math>a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)</math>
 
<math>a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)</math>
  
--[[User:Cmcmican|Cmcmican]] 21:27, 7 February 2011 (UTC)
+
<math>x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}</math>
  
 +
--[[User:Cmcmican|Cmcmican]] 21:35, 7 February 2011 (UTC)
 +
 +
:TA's comment: That looks fine. The expression for <math>a_k</math> is better written in terms of a sin function, though. Regarding the synthesis of <math>x(t)</math>, you got it wrong actually. The complex exponentials should not have a minus sign in their exponents and for <math>k=0</math> the complex exponential has a frequency of zero (DC).
 +
 +
:Another thing is that you may also further simplify <math>x(t)</math> and write it in terms of sin waves only. You will actually notice some pattern in the frequencies of these sin waves.
 
===Answer 2===
 
===Answer 2===
Write it here.
+
First I plotted it out, thanks to WolframAlpha [[Image:EthanHall_ECE301_S11_Wolframalpha-20110215211454118.gif‎]]
 +
 
 +
Then I used the equation <math class="inline"> a_{k} = \frac{1}{T}\int_{0}^{20}x(t)e^{-jk(\frac{2\pi}{T})t}dt </math> where T = 20. You can change the limits of the integral to -10 and 10 since the function is periodic. We just need it over one period.
 +
 
 +
Solving for <math class="inline">a_{0}</math> first we get <math class="inline"> a_{0} = \frac{1}{20} \int_{-10}^{10}x(t)e^{-j(0)(\frac{2\pi}{20})t}dt </math>. We know that x(t) = 0 except for -5 < t < 5 where it is 1.
 +
 
 +
<math> a_{0} = \frac{1}{20} \int_{-5}^{5}(1)e^{(0)}dt = \frac{1}{20}x \bigg|_{-5}^{5} = \frac{1}{2} </math>
 +
 
 +
<math > a_{k} = \frac{1}{20}\int_{-5}^{5}(1)e^{-jk(\frac{2\pi}{20})t}dt; \text{ where } -5 < k <5 \text{ and }k \neq 0 </math>
 +
 
 +
<math > a_{k} = \frac{1}{20} \left[ \frac{e^{-jk(\frac{\pi}{10})t}}{-jk(\frac{\pi}{10})}\right]_{-5}^{5} </math>
 +
 
 +
<math >a_{k} = \frac{1}{20}\left(\frac{1}{-jk\frac{\pi}{10}}\right) \left[ e^{-jk(\frac{\pi}{10})5} - e^{-jk(\frac{\pi}{10})(-5)}  \right] </math>
 +
 
 +
<math>a_{k}= \frac{-1}{2jk}\left[ e^{-\frac{jk\pi}{2}} - e^{\frac{jk\pi}{2}}  \right]\text{ for }-5 < k < 5\text{ and }k \neq 0\text{, all others }0</math>
 +
 
 +
<math>x(t) = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\frac{2\pi}{T}t}</math>
 +
 
 +
<math>x(t) = \sum_{k=-5}^{-5} a_{k}e^{jk\frac{ \pi}{10}t}</math> I changed the limits of the sum because <math class="inline">a_{k}</math> is 0 for anything outside that range.
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Latest revision as of 11:59, 16 September 2013


Practice Question on Computing the Fourier Series continuous-time signal

Obtain the Fourier series the CT signal

$ x(t) = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq t \leq 5,\\ 0, & \text{ for } 5< |t| \leq 10, \end{array} \right. \ $

x(t) periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ k=0\, $

$ a_0=\frac{1}{20}\int_{-10}^{10}x(t)e^{-0}dt=\frac{1}{20}\int_{-5}^{5}1dt=\frac{1}{2} $

$ k\ne0 $

$ a_k=\frac{1}{20}\int_{-10}^{10}x(t)e^{-jkw_0t}dt=\frac{1}{20}\int_{-5}^{5}e^{-jk\frac{\pi}{10}t}dt=\frac{1}{20}\Bigg[\frac{e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}}{-jk\frac{\pi}{10}}\Bigg]=\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg) $

$ x(t)=\frac{1}{2}e^{-jk\frac{\pi}{10}t}+\sum_{k=-\infty}^-1\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t}+\sum_{k=1}^\infty\frac{1}{-jk2\pi}\Bigg(e^{-jk\frac{\pi}{2}}-e^{jk\frac{\pi}{2}}\Bigg)e^{-jk\frac{\pi}{10}t} $

--Cmcmican 21:35, 7 February 2011 (UTC)

TA's comment: That looks fine. The expression for $ a_k $ is better written in terms of a sin function, though. Regarding the synthesis of $ x(t) $, you got it wrong actually. The complex exponentials should not have a minus sign in their exponents and for $ k=0 $ the complex exponential has a frequency of zero (DC).
Another thing is that you may also further simplify $ x(t) $ and write it in terms of sin waves only. You will actually notice some pattern in the frequencies of these sin waves.

Answer 2

First I plotted it out, thanks to WolframAlpha EthanHall ECE301 S11 Wolframalpha-20110215211454118.gif

Then I used the equation $ a_{k} = \frac{1}{T}\int_{0}^{20}x(t)e^{-jk(\frac{2\pi}{T})t}dt $ where T = 20. You can change the limits of the integral to -10 and 10 since the function is periodic. We just need it over one period.

Solving for $ a_{0} $ first we get $ a_{0} = \frac{1}{20} \int_{-10}^{10}x(t)e^{-j(0)(\frac{2\pi}{20})t}dt $. We know that x(t) = 0 except for -5 < t < 5 where it is 1.

$ a_{0} = \frac{1}{20} \int_{-5}^{5}(1)e^{(0)}dt = \frac{1}{20}x \bigg|_{-5}^{5} = \frac{1}{2} $

$ a_{k} = \frac{1}{20}\int_{-5}^{5}(1)e^{-jk(\frac{2\pi}{20})t}dt; \text{ where } -5 < k <5 \text{ and }k \neq 0 $

$ a_{k} = \frac{1}{20} \left[ \frac{e^{-jk(\frac{\pi}{10})t}}{-jk(\frac{\pi}{10})}\right]_{-5}^{5} $

$ a_{k} = \frac{1}{20}\left(\frac{1}{-jk\frac{\pi}{10}}\right) \left[ e^{-jk(\frac{\pi}{10})5} - e^{-jk(\frac{\pi}{10})(-5)} \right] $

$ a_{k}= \frac{-1}{2jk}\left[ e^{-\frac{jk\pi}{2}} - e^{\frac{jk\pi}{2}} \right]\text{ for }-5 < k < 5\text{ and }k \neq 0\text{, all others }0 $

$ x(t) = \sum_{k=-\infty}^{\infty}a_{k}e^{jk\frac{2\pi}{T}t} $

$ x(t) = \sum_{k=-5}^{-5} a_{k}e^{jk\frac{ \pi}{10}t} $ I changed the limits of the sum because $ a_{k} $ is 0 for anything outside that range.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009