(New page: Category:ECE301Spring2011Boutin Category:problem solving = Practice Question on Computing the Fourier Series coefficients of a sine wave= Obtain the Fourier series coefficients of ...) |
|||
(8 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
[[Category:ECE301Spring2011Boutin]] | [[Category:ECE301Spring2011Boutin]] | ||
− | [[Category: | + | [[Category:ECE301]] |
− | = Practice Question on Computing the Fourier Series coefficients of a sine wave= | + | [[Category:signals and systems]] |
+ | [[Category:Problem_solving]] | ||
+ | [[Category:Fourier series]] | ||
+ | |||
+ | = [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Series coefficients of a sine wave= | ||
Obtain the Fourier series coefficients of the CT signal | Obtain the Fourier series coefficients of the CT signal | ||
Line 11: | Line 15: | ||
---- | ---- | ||
===Answer 1=== | ===Answer 1=== | ||
− | + | ||
+ | for <math>sin(t)</math>, the coefficients are <math>a_1=\frac{1}{2j},a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for }k\ne 1,-1</math> | ||
+ | |||
+ | Time shift property: <math>x(t-t_0) \to e^{-jkw_0t_0}a_k</math> | ||
+ | |||
+ | Thus with <math>w_0=3\pi\,</math> and <math>t_0=\frac{-\pi}{2}</math>, | ||
+ | |||
+ | <math>a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1</math> | ||
+ | |||
+ | Is that right? I'm not sure about the time shift property. | ||
+ | |||
+ | --[[User:Cmcmican|Cmcmican]] 21:09, 7 February 2011 (UTC) | ||
+ | :Instructor's comment: we will see the time shifting property later. Can you solve the problem without it? Perhaps you could write sin(u) as a sum of two exponentials, and then replace u by what is inside the sine. You should be able to factor out the phase as a separate exponential (a constant) in front of a complex exponential function. -pm | ||
+ | |||
+ | So like this? | ||
+ | |||
+ | <math>sin(t)=\frac{1}{2j}e^{jkw_0t}-\frac{1}{2j}e^{-jkw_0t}</math> | ||
+ | |||
+ | <math>x(t)=\frac{1}{2j}e^{jk3\pi(t+\frac{\pi}{2})}-\frac{1}{2j}e^{-jk3\pi(t+\frac{\pi}{2})}</math> | ||
+ | |||
+ | therefore, | ||
+ | |||
+ | <math>a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1</math> | ||
+ | |||
+ | --[[User:Cmcmican|Cmcmican]] 08:23, 8 February 2011 (UTC) | ||
+ | :TA's comment: I think you still have a mistake in your answer. As Prof. Boutin noted above, the phase should factor out. | ||
+ | :Hint: Euler's formula is: <math class="inline">\sin(\theta)=\frac{1}{2j}e^{j\theta}-\frac{1}{2j}e^{-j\theta}</math> | ||
===Answer 2=== | ===Answer 2=== | ||
− | + | <math> x(t)=\sin(3 \pi t + \frac{\pi}{2}) = \frac{e^{j (3 \pi t + \frac{\pi}{2}) } - e^{-j(3 \pi t + \frac{\pi}{2})}}{2j} </math> | |
+ | |||
+ | <math> = \frac{1}{2j}e^{j3\pi t}e^{j\frac{\pi}{2}} - \frac{1}{2j}e^{-j3\pi t}e^{-j\frac{\pi}{2}}</math> | ||
+ | |||
+ | Since: | ||
+ | |||
+ | *<math> e^{j\frac{\pi}{2}} = j</math> | ||
+ | *<math> e^{-j\frac{\pi}{2}} = -j</math> | ||
+ | |||
+ | We have: | ||
+ | |||
+ | <math> \frac{1}{2j}(j)e^{j3t\pi} - \frac{1}{2j}(-j)e^{-j3t\pi} \rightarrow \frac{1}{2}e^{(1)j3t\pi} + \frac{1}{2}e^{(-1)j3t\pi}</math> | ||
+ | |||
+ | <math> a_{-1} = \frac{1}{2}, a_{1} = \frac{1}{2}, a_{k} = 0 \text{ for }k \neq -1,1 </math> | ||
===Answer 3=== | ===Answer 3=== | ||
− | + | I think that problem will get much easier if you notice that | |
+ | |||
+ | |||
+ | <math>x(t) = \sin \left(3\pi t + \frac{\pi}{2} \right) = | ||
+ | \cos \left(3\pi t \right) . \ </math>. | ||
---- | ---- | ||
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]] | [[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]] |
Latest revision as of 11:59, 16 September 2013
Contents
Practice Question on Computing the Fourier Series coefficients of a sine wave
Obtain the Fourier series coefficients of the CT signal
$ x(t) = \sin \left(3\pi t + \frac{\pi}{2} \right) . \ $
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
for $ sin(t) $, the coefficients are $ a_1=\frac{1}{2j},a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $
Time shift property: $ x(t-t_0) \to e^{-jkw_0t_0}a_k $
Thus with $ w_0=3\pi\, $ and $ t_0=\frac{-\pi}{2} $,
$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $
Is that right? I'm not sure about the time shift property.
--Cmcmican 21:09, 7 February 2011 (UTC)
- Instructor's comment: we will see the time shifting property later. Can you solve the problem without it? Perhaps you could write sin(u) as a sum of two exponentials, and then replace u by what is inside the sine. You should be able to factor out the phase as a separate exponential (a constant) in front of a complex exponential function. -pm
So like this?
$ sin(t)=\frac{1}{2j}e^{jkw_0t}-\frac{1}{2j}e^{-jkw_0t} $
$ x(t)=\frac{1}{2j}e^{jk3\pi(t+\frac{\pi}{2})}-\frac{1}{2j}e^{-jk3\pi(t+\frac{\pi}{2})} $
therefore,
$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2j},a_{-1}=\frac{-e^{-j 3 \pi \frac{\pi}{2}}}{2j}, a_k=0 \mbox{ for }k\ne 1,-1 $
--Cmcmican 08:23, 8 February 2011 (UTC)
- TA's comment: I think you still have a mistake in your answer. As Prof. Boutin noted above, the phase should factor out.
- Hint: Euler's formula is: $ \sin(\theta)=\frac{1}{2j}e^{j\theta}-\frac{1}{2j}e^{-j\theta} $
Answer 2
$ x(t)=\sin(3 \pi t + \frac{\pi}{2}) = \frac{e^{j (3 \pi t + \frac{\pi}{2}) } - e^{-j(3 \pi t + \frac{\pi}{2})}}{2j} $
$ = \frac{1}{2j}e^{j3\pi t}e^{j\frac{\pi}{2}} - \frac{1}{2j}e^{-j3\pi t}e^{-j\frac{\pi}{2}} $
Since:
- $ e^{j\frac{\pi}{2}} = j $
- $ e^{-j\frac{\pi}{2}} = -j $
We have:
$ \frac{1}{2j}(j)e^{j3t\pi} - \frac{1}{2j}(-j)e^{-j3t\pi} \rightarrow \frac{1}{2}e^{(1)j3t\pi} + \frac{1}{2}e^{(-1)j3t\pi} $
$ a_{-1} = \frac{1}{2}, a_{1} = \frac{1}{2}, a_{k} = 0 \text{ for }k \neq -1,1 $
Answer 3
I think that problem will get much easier if you notice that
$ x(t) = \sin \left(3\pi t + \frac{\pi}{2} \right) = \cos \left(3\pi t \right) . \ $.