(New page: == Inverse Fourier Transform == let <math>\mathcal{X}(w) = w \times u(-w)</math> then <math>\mathcal{F}^{-1} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathcal{X}(w) e^{jwt}\, dw = \frac...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Inverse Fourier Transform ==
 
== Inverse Fourier Transform ==
  
Line 18: Line 28:
  
 
<math>\Rightarrow \mathcal{F}^{-1} = \frac{1}{2\pi t}</math>
 
<math>\Rightarrow \mathcal{F}^{-1} = \frac{1}{2\pi t}</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:53, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Inverse Fourier Transform

let $ \mathcal{X}(w) = w \times u(-w) $

then $ \mathcal{F}^{-1} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathcal{X}(w) e^{jwt}\, dw = \frac{1}{2\pi} \int_{-\infty}^{+\infty} wu(-w) e^{jwt} = \frac{1}{2\pi} \int_{-\infty}^{0} we^{jwt} $

using integration by parts:

let $ u = w, du = dw, dv = e^{jwt} dw, v = \frac{1}{jt}e^{jwt} $


$ \Rightarrow \mathcal{F}^{-1} = \frac{1}{2\pi} \times \left [ uv - \int v \, du \right ] = \left [\frac{w e^{jwt}}{jt} \right ]_{-\infty}^{0} - \int_{-\infty}^{0} \frac{1}{jt}e^{jwt} \, dw $


$ \left [\frac{w e^{jwt}}{jt} \right ]_{-\infty}^{0} = 0 $ and

$ - \int_{-\infty}^{0} \frac{1}{jt}e^{jwt} \, dw = - \frac{1}{jt} \left [\frac{e^{jwt}}{jt} \right ]_{-\infty}^{0} = \frac{1}{t} $

$ \Rightarrow \mathcal{F}^{-1} = \frac{1}{2\pi t} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood