Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
Compute the Inverse Fourier Transform of:
 
Compute the Inverse Fourier Transform of:
  
Line 8: Line 17:
  
 
<math>x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t}
 
<math>x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t}
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:52, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Compute the Inverse Fourier Transform of:

$ \,\mathcal{X}(\omega)= \frac{\pi}{j} \delta (w - 2\pi) + \frac{2\pi}{j} \delta (w + 2\pi) $

$ x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \mathcal{X} (\omega) e^{jwt}dw $

$ x(t) = \frac{1}{2\pi} \frac{\pi}{j}\int^{\infty}_{-\infty} \delta(w-2\pi)e^{jwt} dw + \frac{1}{2\pi}\frac{2\pi}{j} \int_{-\infty}^{\infty} \delta(w+2\pi)e^{jwt} dw] $

$ x(t) = \frac{1}{2j}e^{j2\pi t} + \frac{1}{j}e^{-j2\pi t} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett